Биогаз из опилок

В Краснокамске инженер нашёл способ получать из дерева газ. И уже убедился, что его устройство – газогенератор – вполне может отапливать небольшой дом. До производства ещё далеко, но местные лесопилки уже встают в очередь за опытными образцами – чтобы с их помощью избавляться от опилок.
Заряд для своего изобретения инженер Роман Бредихин пока получает от личного автомобиля. Аккумулятор запускает в действие всю конструкцию. Эта установка — реактор плюс два фильтра – перерабатывает древесину в горючий газ.
Над вопросом — как получить из дерева газ — Роман задумался год назад по просьбе друзей с лесопилки. В основе генератора — реакция пиролиза: дерево при температуре 1200 градусов без доступа воздуха отдает газ. Установку инженер моделировал в свободное от работы время.
В январе первые испытания главной части реактора прошли успешно. Затем добавили фильтры, и сейчас пламя почти прозрачное. На предприятии коллеги решили поддержать творческие поиски инженера — для газогенератора детали вытачивали на лазерном станке.
Следующий шаг – подключить в горелке двигатель внутреннего сгорания, который будет работать на газу.


кумулятор в 12 вольт дает 90 кубометров газа в час. Объема хватит, чтобы согреть небольшое здание.
Все опыты изобретатель проводил с щепкой. Несколько мешков материала просто подарила одна из лесопилок Куединского района. Там щепки — это мусор, а тут послужили науке.
Использовать установку можно, даже не выезжая за пределы района: летом отходы часто становятся источниками пожаров. В самом Краснокамске, в городской черте, уже полмесяца тлеет короотвал с местного бумкомбината. Огонь пытаются сбить бульдозерами, но кардинально эту проблему не решает, признают пожарные, не отказались бы от новых методов.
Испытать изобретение сразу на таких масштабах Роман пока не готов. Объясняет, что должны быть другие размеры конструкции. Но новости о газогенераторе в округе разлетелись быстро. В очереди за опытными образцами – уже три лесопилки.

Источник: forum.abok.ru

Специфика получения биогаза

Биогаз образуется в результате брожения биологического субстрата. Его разлагают гидролизные, кислото- и метанообразующие бактерии. Смесь вырабатываемых бактериями газов получается горючей, т.к. содержит большой процент метана.

По своим свойствам она практически не отличается от природного газа, который используется для промышленных и бытовых нужд.

Биогаз – экологически чистое топливо, а технология его получения не оказывает особого влияния на окружающую среду. Более того, в качестве сырья для биогаза используют отходы жизнедеятельности, которые нуждаются в утилизации.

Их помещают в биореактор, где происходит переработка:


  • в течение некоторого времени биомасса подвергается воздействию бактерий. Срок брожения зависит от объема сырья;
  • в результате деятельности анаэробных бактерий выделяется горючая смесь газов, в состав которой входят метан (60%), углекислый газ (35%) и некоторые другие газы (5%). Также при брожении в небольших количествах выделяется потенциально опасный сероводород. Он ядовит, поэтому крайне нежелательно, чтобы люди подвергались его воздействию;
  • смесь газов из биореактора очищается и поступает в газгольдер, где хранится до момента использования по назначению;
  • газ из газгольдера можно использовать точно так же, как природный. Он поступает к бытовым приборам – газовым печам, отопительным котлам и т.п.;
  • разложившуюся биомассу необходимо регулярно удалять из ферментатора. Это дополнительные трудозатраты, однако усилия окупаются. После брожения сырье превращается в высококачественное удобрение, которое используют на полях и огородах.

Биогазовая установка выгодна для владельца частного дома только в том случае, если у него есть постоянный доступ к отходам животноводческих ферм. В среднем из 1 м.куб. субстрата можно получить 70-80 м.куб. биогаза, но выработка газа идет неравномерно и зависит от многих факторов, в т.ч. температуры биомассы. Это осложняет расчеты.


Чтобы процесс получения газа был стабильным и непрерывным, лучше всего строить несколько биогазовых установок, а субстрат в ферментаторы закладывать с разницей во времени. Такие установки работают параллельно, а сырье в них загружают последовательно.

Это гарантирует постоянную выработку газа, благодаря чему можно добиться его непрерывного поступления к бытовым приборам.

Самодельное биогазовое оборудование, собранное из подручных материалов, обходится гораздо дешевле установок промышленного производства. Его эффективность ниже, но вполне соответствует вложенным средствам. Если есть доступ к навозу и желание приложить собственные усилия для сборки и обслуживания конструкции, это очень выгодно.

Преимущества и недостатки системы

Биогазовые установки имеют немало преимуществ, но и недостатков хватает, поэтому перед началом проектирования и строительства следует все взвесить:

  • Утилизация отходов. Благодаря биогазовой установке можно получить максимум пользы от мусора, от которого все равно пришлось бы избавляться. Эта утилизация менее опасна для окружающей среды, чем закапывание отходов.
  • Возобновляемость сырья. Биомасса – это не уголь и не природный газ, добыча которых истощает запасы ресурсов. При ведении сельского хозяйства сырье появляется постоянно.
  • Относительная небольшое количество СО2. При получении газа окружающая среда не загрязняется, а вот при его использовании в атмосферу выделяется небольшое количество двуокиси углерода. Оно не опасно и не способно критично изменить экологию, т.к. его поглощают растения в процессе роста.

  • Умеренное выделение серы. При сгорании биогаза в атмосферу попадает небольшое количество серы. Это негативное явление, однако его масштабы познаются в сравнении: при сжигании природного газа загрязнение окружающей среды окислами серы гораздо больше.
  • Стабильная работа. Производство биогаза более стабильно, чем работа солнечных батарей или ветряков. Если энергией солнца и ветра нельзя управлять, то биогазовые установки зависят от деятельности человека.
  • Можно использовать несколько установок. Газ – это всегда риски. Чтобы снизить потенциальный ущерб в случае аварии, можно рассредоточить по участку несколько биогазовых установок. Если правильно спроектировать и собрать систему из нескольких ферментаторов, она будет работать стабильнее, чем один крупный биореактор.
  • Выгоды для сельского хозяйства. Для получения биомассы высаживают некоторые виды растений. Можно выбрать такие, которые улучшают состояние грунта. Например, сорго снижает эрозию почвы, улучшает ее качество.

У биогаза есть и недостатки. Хотя это относительно чистое топливо, оно все же загрязняет атмосферу. Также могут возникать проблемы с поставками растительной биомассы.

Безответственные владельцы установок нередко заготавливают ее так, что истощают землю и нарушают экологический баланс.

Расчет рентабельности установки


В качестве сырья для производства биогаза обычно используют коровий навоз. Одна взрослая корова может дать его столько, чтобы обеспечить 1.5 м.куб. топлива; свинья – 0.2 м.куб.; курица или кроль (в зависимости от массы тела) – 0.01-0.02 м.куб. Чтобы понять, много это или мало, можно сравнить с более привычными видами ресурсов.

1 м.куб. биогаза обеспечивает такое же количество тепловой энергии, как:

  • дрова – 3.5 кг;
  • уголь – 1-2 кг;
  • электричество – 9-10 кВт/ч.

Если знать примерный вес сельскохозяйственных отходов, которые будут доступны в течение ближайших лет, и количество необходимой энергии, можно просчитать рентабельность биогазовой установки.

Для закладки в биореактор готовят субстрат, в который входят несколько компонентов в таких пропорциях:

  • навоз (лучше всего коровий или свиной) – 1.5 т;
  • органические отходы (это могут быть перегнившие листья или другие компоненты растительного происхождения) – 3.5 т;
  • подогретая до 35 градусов вода (количество теплой воды рассчитывают так, чтобы ее масса составляла 65-75% от общего количества органики).

Расчет субстрата сделан для одной закладки на полгода, если исходить из умеренного потребления газа. Примерно через 10-15 дней процесс ферментации даст первые результаты: газ появится в небольших количествах и начнет заполнять хранилище. Через 30 дней можно ожидать полноценной выработки топлива.


Если установка работает правильно, объем биогаза постепенно будет увеличиваться, пока субстрат не перегниет. Производительность конструкции напрямую зависит от скорости брожения биомассы, которая в свою очередь связана с температурой и влажностью субстрата.

Инструкция по самостоятельному строительству

Если нет опыта в сборке сложных систем, имеет смысл подобрать в сети или разработать самый простой чертеж биогазовой установки для частного дома.

Чем проще конструкция, тем она надежнее и долговечнее. Позже, когда появятся навыки строительства и обращения с системой, можно будет переделать оборудование или смонтировать дополнительную установку.

При расчете объема ферментатора стоит ориентироваться на 5 м.куб. Такая установка позволяет получить количество газа, необходимое для обогрева частного дома площадью 50 м.кв., если в качестве источника тепла используют газовый котел или печь.

Это усредненный показатель, т.к. калорийность биогаза обычно не выше 6000 ккал/м.куб.

Строительство биогазовой установки можно разделить на несколько этапов.

Этап 1 – подготовка ямы под биореактор

Практически вся биогазовая установка находится под землей, поэтому многое зависит от того, как была вырыта и отделана яма. Есть несколько вариантов укрепления стенок и герметизации ямы – пластик, бетон, полимерные кольца.


Оптимальное решение – покупка готовых полимерных колец с глухим дном. Они обойдутся дороже подручных материалов, зато не потребуется дополнительная герметизация. Полимеры чувствительны к механическим нагрузкам, зато не боятся влаги и химически агрессивных веществ. Они не подлежат ремонту, но при необходимости их легко будет заменить.

Этап 2 – обустройство газового дренажа

Покупка и монтаж специальных мешалок для биогазовых установок – дорогое удовольствие. Систему можно удешевить, обустроив газовый дренаж. Он представляет собой вертикально установленные полимерные канализационные трубы, в которых проделано множество отверстий.

При расчете длины труб дренажа следует ориентироваться на запланированную глубину заполнения биореактора. Верхние части труб должны быть выше этого уровня.

В готовый биореактор можно сразу загрузить субстрат. Его накрывают пленкой, чтобы выделяющийся в процессе ферментации газ находился под небольшим давлением. Когда будет готов купол, это обеспечит нормальную подачу биометана по отводящей трубе.

Этап 3 – монтаж купола и труб

Завершающий этап сборки простейшей биогазовой установки – это монтаж купольной верхней части. В самой высокой точке купола устанавливают газоотводящую трубу и протягивают ее к газгольдеру, без которого не обойтись.

Емкость биореактора закрывают плотной крышкой. Чтобы предотвратить смешивание биометана с воздухом, обустраивают гидрозатвор. Также он служит для очистки газа. Нужно предусмотреть спусковой клапан, который сработает, если давление в ферментаторе будет слишком высоким.

Более подробно отом, как сделать биогаз из навоза читайте  в этом материале.

Способы подогрева биореактора


Микроорганизмы, перерабатывающие субстрат, есть в биомассе постоянно, однако для их интенсивного размножения нужна температура 38 градусов и выше.

Для подогрева в холодный период можно использовать змеевик, подсоединенный к системе отопления дома, или электрические нагреватели. Первый способ экономически выгоднее, поэтому чаще используют именно его.

Биогазовую установку необязательно заглублять в землю, есть и другие варианты обустройства. Пример работы системы, собранной из бочек, приведен в видеоролике ниже.

Выводы и полезное видео по теме

Хотя в сборке и обустройстве биогазового оборудования нет ничего сложного, нужно быть предельно внимательным к деталям. Ошибки недопустимы, т.к. могут привести к взрывам и разрушениям. Предлагаем видеоинструкции, которые помогут разобраться в устройстве установок, правильно их собрать и дополнить полезными приспособлениями для более удобного использования биогаза.

В видеоролике рассказано, как устроена и работает стандартная биогазовая установка:

Пример самодельной биогазовой установки. Видеоурок по обустройству системы своими руками:


Видеоинструкция по сборке биогазовой установки из бочки:

Описание процесса изготовления мешалок для субстрата:

Подробное описание работы самодельного газового хранилища:

Какой бы простой ни была биогазовая установка, выбранная для частного дома, не стоит на ней экономить. Если есть возможность, лучше купить разборный биореактор промышленного производства.

Если нет – изготовить из качественных и устойчивых материалов: полимеров, бетона или нержавеющей стали. Это позволит создать по-настоящему надежную и безопасную систему газоснабжения дома.

Появились вопросы по теме статьи, нашли недочеты или есть ценная информация, которой вы можете поделиться с нашими читателями? Пожалуйста, оставляйте свои комментарии, задавайте вопросы, делитесь опытом.

Источник: sovet-ingenera.com

Сырьем для производства брикетов является тот же материал, что и для изготовления гранул – опилки различных пород древесины, щепа, лузга подсолнечника, гречихи, солома и многие другие растительные отходы. Технология производства брикетов схожа с технологией гранулирования, но более простая.Брикеты бывают разных форм – в виде кирпича, цилиндра или шестигранника с отверстием внутри. Стандартных размеров у данной продукции нет.
Основным фактором, определяющим механическую прочность, водостойкость и калорийность брикета, являются его плотность. Чем плотнее брикет, тем выше показатели его качества.


м ниже плотность брикетов, тем меньше их калорийность. Например, при плотности брикета 650-750 кг/м3 калорийность брикетов равна 12-14 МДж/кг; при плотности 1200-1300 кг/м3 — 25-31 МДж/кг.
Качество брикетов в значительной мере зависит от влажности исходной смеси. Различают оптимальную и критическую влажности. Оптимальная влажность составляет 4-10 %, при ней достигаются наилучшие механические характеристики брикетов (следует учитывать, что для некоторых видов сырья верхним пределом влажности является 6-8%). Критической называется влажность, при которой возможно образование брикетов, но в нем появляются трещины — таким образом, брикет товарного вида не имеет. Критическая влажность находится в пределах 10-15 %. При более высокой влажности полученный брикет будет «разорван» внутренним давлением влаги, возникающем при сжатии измельченной массы.
Существует 3 основных типа топливных брикетов. Они отличаются по форме, которая зависит от метода производства. «В народе» прижилось три названия, которые произошли из имен компаний, выпускающих оборудование для производства того или иного брикета. Таким образом, выделяют брикеты RUF, брикеты NESTRO и брикеты Pini-Kay. Однако, кроме упомянутых производителей брикетирующего оборудования, существуют и другие фирмы — например C.F.Nielsen (Дания), UPM (Литва), Bogma (Швеция), Pawert-SPM AG (Швейцария), DI-PIU (Италия).

Брикеты подразделяются по двум принципам:
Первое — по сырью, из которого они изготовлены. Здесь выделяют: брикеты из древесных отходов (стружка и опил без коры, отходы с корой, кора, отходы производства МДФ, шлифпыль, отходы фанерных производств, лигнин, брикеты из сельскохозяйственных отходов); брикеты из агробиомассы (солома , шелуха подсолнечника, шелуха злаковых, отходы хлопка, сено, камыш); брикеты из прочих материалов (бумага, картон, целлюлоза, полимеры, торф).
Второе — по способу прессования и форме. Брикеты бывают трех видов: цилиндрические, экструдерные и в виде кирпичика.
Цилиндрические брикеты
Этот вид брикетов получается путём прессования на оборудовании ударно-механического типа. Они имеют бесконечную длину, и могут быть разделены как на шайбы, так и на поленья. Имеют очень высокую плотность, пользуются большой популярностью в Европе.
Такие брикеты могут иметь не только круглую, но и квадратную или восьмиугольную форму, иметь или не иметь отверстие. Вид брикета заказывает покупатель, он зависит от того, какие формы больше популярны в каждой отдельно взятой стране. Данные брикеты охотно покупают такие страны, как Германия, Дания, Великобритания, Норвегия, Швеция, Италия. На внутреннем рынке, чаще всего используют кусковые брикеты, изготовленные по данной технологии, в качестве топлива для твёрдотопливных котлов.
Экструдерные брикеты
Эти брикеты обязательно имеют отверстие внутри и обожженную верхнюю поверхность.
В основе экструзивной технологии производства брикетов лежит процесс прессования шнеком под высоким давлением при нагревании от 250 до 350 С°. Температура, присутствующая при прессовании, способствует оплавлению поверхности брикетов, которая благодаря этому становится прочной, что немаловажно для транспортировки брикета.
Такие брикеты закладываются вручную в топку котла или в печку, они пользуются спросом в Прибалтике и на внутреннем рынке России.
Брикеты в виде кирпичика

Эта продукция имеет вид прямоугольного параллелепипеда со скошенными углами. Такой брикет получается путём гидравлического прессования, и его размеры зависят от рыхлости сырья, из которого он произведён и давления, которое на него оказано. Они хорошо используются на внутреннем рынке, и также отлично покупаются во все европейские страны.
Технология
Процесс брикетирования — это процесс сжатия материала под высоким давлением, с выделением температуры от силы трения. За счет данного воздействия в древесине происходит выделение лигнина, который является связующим веществом для формирования брикета. Для брикетов не из древесного сырья, могут применяться экологически чистые добавки (не более 2%). При производстве данной продукции следует обратить особое внимание на влагу – очень важный параметр, влияющий на плотность брикета. В случае превышения 14% влажности сырья брикет разваливается на произвольные куски из-за избытка влаги.
Объем брикета составляет 1/10 от объёма затраченного на его производство сырья, что дает значительную экономию при транспортировке и хранении биотоплива.

Для производства древесных брикетов применяют поршневые и шнековые прессы, сырье – опилки и стружки. Перед прессованием материал дополнительно измельчают и подсушивают (влажность не должна превышать 12 – 14%)
Биогаз из опилокПоршневой пресс работает циклически – при каждом ходе поршня продавливают определенное количество материала через коническое сопло, на брикетах четко различимы соответствующие цик-лам слои. В приводе всегда применя-ется маховик, позволяющий выровнять нагрузку двигателя. Износ поршня неве-лик, поскольку относительное переме-щение между прессуемым материалом и поршнем мало, быстро изнашивается сопло. Поршневые прессы относительно дешевы и поэтому широко распространены.
Биогаз из опилок

Шнековый пресс легче поршневого, поскольку отсутствуют массивные поршни и маховики. Продукция выходит непрерывно, поэтому ее можно разрезать на нужные куски. Плотность выше, чем у поршневых прессов. Шнековые прессы менее шумные, благодаря отсутствию ударных нагрузок. К недостаткам можно отнести больший расход энергии и быстрый износ шнека.

 

Топливные брикеты имеют широкое применение и могут использоваться для всех видов топок, котлов центрального отопления и пр. Большим достоинством брикетов является постоянство температуры при горении на протяжении 4 и более часов. (параграф подготовлен О.Ракитовой и С.Александровой)
 

Источник: www.infobio.ru

В чём суть метода? 

Исследователи подвергают древесную биомассу термической обработке при отсутствии или незначительном содержании кислорода. Печь заполняют спрессованными брикетами из древесных отходов, а сверху засыпают толстым слоем минерального наполнителя. Это может быть специальная глина, тальк или мел. Компоненты химически устойчивы и относительно недороги. Затем реактор нагревают до 200-300°C, и отходы древесины, разлагаясь на более простые молекулы, постепенно превращаются в подобие угля. Приблизительно так в недрах нашей планеты на протяжении миллионов лет из погибших растений формировался каменный и бурый уголь.

«При такой технологии можно получать биотопливо весьма высокого качества, с энергетическими характеристиками близкими к углю, — говорит один из авторов исследования, доктор технических наук Борис Кичатов. — По сути своей метод прост. Для производства не требуется больших капитальных затрат. Это важно для предприятий малого и среднего бизнеса. Установки, использующие подобную технологию, можно размещать в местах, где непосредственно идёт заготовка древесины. В настоящий момент отходы, образующиеся при вырубке лесов (пни, ветви деревьев), как правило, сжигают, а порой просто выбрасывают. В последнем случае они становятся источником для развития болезней и вредителей лесов. Технология, которую мы предлагаем, позволит создавать относительно небольшие производства».

Ещё одно важное достоинство нового вида биотоплива: его сжигание не будет приводить к дополнительным выбросам углекислого газа в атмосферу. Кроме того, технология в качестве побочных продуктов даёт весьма ценные химические соединения. Они пригодятся в других отраслях промышленности.

На что ещё делать ставку? 

Несмотря на большие запасы нефти, газа и угля, Россия пытается развивать у себя производство топлива из растительного сырья. В первую очередь, конечно, из отходов всё той же древесины. (Справедливости ради скажем, что обычные дрова — это тоже вид биотоплива). 

«У России огромный потенциал для развития этого сектора энергетики, — считает директор ООО „Лесная сертификация“ Павел Трушевский. — По экспертным данным, в стране в том или ином виде образуется до 80 млн кубометров древесного сырья в год. Это порубочные остатки на делянках, древесина, оставленная на корню, щепа, опилки. Поэтому Россия — очень интересный рынок для производства биотоплива. Причём начать стоит с внутреннего рынка. У нас много котельных, которые находятся где-то в лесных районах и при этом работают на дорогом мазуте. Спрашивается, зачем везти туда мазут, если рядом с ними растёт лес? Более дешёвая и экологически чистая энергия, способная создавать рабочие места, валяется у них под ногами». 

Например, с угля на древесное биотопливо планируют перевести в ближайшее время Байкальскаую ТЭЦ в Иркутской области. Местные власти подсчитали и поняли, что это будет выгоднее, чем переход на газ. Кстати, биогаз (то есть газ, получаемый в результате брожения биомассы) — второй по перспективам вид биотоплива в нашей стране. Ставку нужно делать на отходы сельского хозяйства, в том числе жизнедеятельности домашних животных — навоз, помёт… 

Что касается выращивания рапса, кукурузы или тем более тростника, тут эксперты проявляют сдержанность. К чему создавать новые плантации, если 45% территории России покрыто лесами и их возобновляемый потенциал почти не используется? 

В принципе, гнать этиловый спирт много из чего можно, но какова будет цена вопроса? Недавно химики из МГУ предложили технологию получения этанола из грибов. Их в наших лесах тоже видимо-невидимо. Но не нужно быть семи пядей во лбу, чтобы понять: себестоимость такого биотоплива будет куда выше, чем полученного из древесины.

Источник: www.aif.ru

Биотопливо — доступный и неисчерпаемый ресурс

Биотопливо — это используемые для получения тепловой энергии вещества биологического или животного происхождения.

Для производства биотоплива подходят как возобновляемые природные ресурсы, так и отходы, образующиеся в результате деятельности деревообрабатывающей, целлюлозно-бумажной промышленности и потребления человека.

В зависимости от целей и предназначения, биотопливо имеет различные агрегатные состояния: твёрдое, жидкое и газообразное.

Твёрдое

Твёрдое биотопливо на сегодняшний день держит пальму первенства как самый популярный вид альтернативного топлива.

Сырьём для производства твёрдого биотоплива служит биомасса, образующаяся из растительных остатков, стеблей и семян кукурузы, рапса, из соломы, опилок, щепы, хвои, листьев, а также сучки, ветки, кора, обрезки досок, бракованные части из дерева, навоз, торф и т. д. Биомассу прессуют в топливные гранулы (пеллеты) или брикетируют.

Энергетические леса, в состав которых входят быстрорастущие деревья и кустарниковые группы растений, позволяют поддерживать сырьевой баланс, обеспечивая производство биотоплива необходимым объёмом материала.

Биогаз из опилок
Быстрорастущие деревья сажают для использования их впоследствии в качестве сырья для производства биотоплива

Жидкое

В состав жидкого биотоплива входят спирты, эфиры, масла. Сырьём выступает та же биомасса, состоящая из растительных остатков, стеблей и семян кукурузы, рапса, сахарной свёклы и тростника, пшеницы, а также жмыха, выжимки, патоки и т.д.

Образование топлива происходит в результате спиртового брожения биологической массы с высоким содержанием крахмала и/или сахара, а также гидролизе. Образующийся в результате брожения раствор после очистки и дистилляции преобразуется в биоэтанол, биобутанол, биометанол, биодизель.

Биогаз из опилок
Простейшее устройство для анаэробного брожения

Газообразное

Газообразное биотопливо или биогаз образуется в результате анаэробного брожения (перепревания) органических веществ. Для производства биогаза используют метанообразующие, гидролизные или кислотообразующие бактерий.

Биогаз из опилок
Размещение экологически чистого производства

Наряду с общепринятой, используется и альтернативная классификация биотоплива по поколениям:

  • к первому поколению относится биотопливо, производимое из биологического сырья посредством брожения;
  • биотопливо второго поколения получают из неопасных отходов производства и потребления;
  • к третьему поколению относится производство биотоплива из растительных жиров, содержащихся в водорослях.

Плюсы и минусы использования самодельного биотоплива

Большинство видов биологического топлива производится промышленным способом с использованием специального оборудования. Естественно, что попытка применить данные технологии жителю частного домовладения или начинающему фермеру может оказаться не под силу. При использовании других, на первый взгляд, более технически простых способов получения топлива из биоматериалов, возникают трудности с обеспечением пожарной безопасности, защиты от отравления ядовитыми, легковоспламеняющимися веществами при работе с сырьём для биотоплива. По этой причине жителям села, фермерам, дачникам начинать свою новаторскую деятельность желательно не с холодного ядерного синтеза, а с чего-то попроще. Например, уже есть рабочие модели получения биогаза, древесного угля, брикетирования отходов и опилок для каминов и биокаминов, работы двигателей внутреннего сгорания на древесном газе.

Самостоятельное производство и использование биотоплива имеет смысл при доступной дешёвой сырьевой базе, обладающей энергетической ценностью, но находящейся состоянии, непригодном для использования без предварительной переработки или подготовки. Если посмотреть на этот вопрос шире, то к данному типу можно отнести воду, опилки, силос, льяльные воды и т. д., которые, с одной стороны, обладают энергетической ценностью, но с другой — высвободить тепловую энергию при отсутствии специального оборудования затруднительно.

Преимущества

К очевидным положительным сторонам производства и использования самодельного биологического топлива с позиции частного лица относятся:

  • доступность сырья
  • дешевизна
  • простота изготовления.

У некоторых видов биотоплива (биодизель, биогаз) присутствуют схожие с аналогичными промышленными образцами показатели удельной теплоёмкости, температуры сгорания, антидетонационные свойства, экологичность. Для жителя сельской местности, держащего хозяйство, фермера, плотника или столяра раздобыть опилки, силос, навоз намного проще и дешевле чем бензин, дизельное топливо, уголь или дрова. В большинстве случаев народные умельцы используют уже опробованные и достаточно безопасные технологии.

Недостатки

Использование биотоплива обладает следующими недостатками:

  • некоторые минусы связаны непосредственно с производством самодельных видов биотоплива: отсутствие автоматических систем контроля за давлением и температурой предъявляет повышенные требования к используемому оборудованию и его установке
  • само оборудование для производства биологического топлива не сертифицировано, изготавливается, как правило, кустарным способом местным «левшой»
  • некоторые получаемые вещества (биометан, угарный газ) являются ядовитыми
  • топливо обладает низкой плотностью, концентрацией, а потому подлежит немедленному использованию, так как по прошествии времени расслаивается и впитывает влагу, превращаясь в эмульсию.

Способы производства биотоплива для частного подворья и домашних нужд своими руками

Собственник частного домовладения, фермер, крестьянин могут для своих нужд самостоятельно изготовить такие виды биотоплива, как пеллеты (спрессованные опилки, отходы, силос, торф), древесный уголь (дрова, опилки), биогаз (навоз, птичий помёт, солома), топливо для биокаминов, биоэтанол (листва кукурузы, сахарная свёкла, патока, жмых, выжимки, макуха, сусло).

Древесный уголь

Биогаз из опилок
Промышленный вариант фасованного в мешки древесного угля

К сожалению, спрос на древесный уголь в значительной степени взвинтил на него цены. Однако технология его получения крайне проста и не требует финансовых затрат — только время и желание.

В качестве сырья для получения древесного угля используются дрова или опилки.

Биогаз из опилок
Материал для получения древесного угля

Древесный уголь получается при воздействии высокой температурой на древесное сырьё. Выделяют несколько способов и подвидов получения угля.

Получение древесного угля в закрытой ёмкости

В зависимости от потребностей, в древесном угле подбирается соответствующего объёма ёмкость. Это может быть металлический короб или бочка. Используемая ёмкость должна быть толстостенной, чтобы выдержать внутреннее давление, и нейтральной, то есть не использовавшейся для хранения химических веществ. Если ёмкость использовалась для хранения бензина или дизельного топлива (нефтепродуктов), её необходимо прожечь на огне.

Выбранную ёмкость заполняют опилками, древесными отходами или просто дровами. Затем ёмкость плотно закупоривают, обмазывая щели глиной. Крышка ёмкости должна быть снабжена газоотводной трубкой небольшого диаметра или просто отверстием.

Ёмкость или бочка подвешивается или устанавливается на подставку, за неимением которой можно использовать подручные строительные материалы (кирпичи, шлакоблоки). Основная задача — освобождение под ёмкостью достаточного места для разведения открытого огня. Его температуры должно быть достаточно для нагревания находящейся внутри бочки древесины до 300–350 градусов Цельсия.

При длительном нагревании ёмкости через газоотводную трубку (а также из всех щелей) происходит выделение сначала влаги, а затем угарного газа, который ядовит и огнеопасен. Об этом необходимо помнить и соблюдать меры предосторожности. Ориентировочный цвет угарного газа — сизый. Через некоторое время при поддержании высокой температуры выход древесного газа прекратится. Это является сигналом того, что процесс производства древесного угля подходит к своему завершению. После прекращения выхода газа снимаем ёмкость с огня или просто гасим костёр и затыкаем чем-либо газоотводную трубку или отверстие.

Даём древесному углю остыть, открываем крышку и:

а) Радуемся результатам своего новаторского труда;

б) Клянём себя за то, что не обеспечили нормальную температуру прожига, поленились собрать достаточно дров для костра и в результате получили не прожаренные дрова или «сырой» древесный уголь.

Для лучшего понимания длительности процесса — сориентирую: на получение древесного угля из сырья в 20- или 30-литровой ёмкости понадобится 2–3 часа!

Для обладателей печей получение древесного угля упрощается в несколько раз! Достаточно только выхватывать из горящей печи прогоревшие «головешки» алого цвета и помещать их в закрывающуюся плотно ёмкость. После полного остывания их можно использовать.

Получение угля в яме

Биогаз из опилок
Демонстрация изготовления древесного угля в бочке для личных нужд

Способ получения древесного угля в яме очень древний и поэтому, возможно, подзабытый.

Сначала подготавливаем дрова (они должны быть сухими), освобождаем их от коры и разрезаем на удобные куски до 25–30 см.

Затем в земле выкапывается небольшая яма цилиндрической формы. Приблизительный размер ямы: глубина — два штыка лопаты, диаметр — до одного метра. Выровняйте стенки, делая их строго вертикальными. Дно ямы плотно утрамбуйте.

На дне разведите костёр, постепенно увеличивая его до тех пор, пока горящими углями и дровами не будет заполнено дно ямы. На хорошо разгоревшийся костёр плотным слоем выложите приготовленные дрова. Не давая пламени вырваться наружу, но и не подавляя огонь, постепенно на прогоревшие дрова подкладываем новые до заполнения ямы. С последней партией древесины, покрывающей яму на уровне поверхности земли, подкладывать дрова прекращаем. Расшевеливаем костёр длинным шестом (чтобы не обжечься и достать до дна ямы), сверху обкладываем его сначала травой, зеленью, потом присыпаем землёй, ограничивая доступ кислорода, тем самым останавливая окислительные процессы. Раскапывать яму и выбирать угли можно на третий день.

В другом похожем способе используется металлическая бочка больших размеров, на дне которой также разводится сильный огонь. Сверху костра на подставки из кирпичей послойно выкладываются дрова, чтобы между углями и свежими дровами было свободное пространство. При образовании достаточного количества углей на них накладывается плотный слой древесины. Когда на поверхности, полностью заполненной дровами бочки, покажутся языки пламени, необходимо прикрыть бочку крышкой или другой огнеупорной поверхностью, оставляя небольшую щель для выхода древесного газа. Для ускорения окислительных процессов можно использовать пылесос, подавая воздух в нижнюю часть бочки через специально для этого проделанное отверстие. В любом случае, планируя это мероприятие, готовьтесь уделить делу не менее 4–5 часов, включая подготовку.

Готовый древесный уголь можно извлекать из бочки после полного остывания.

Универсальный (гибридный) способ

Существует довольно оригинальный способ получения древесного угля, основанный на использовании закрытой ёмкости и обладающий ещё одним преимуществом, повышающим коэффициент полезного действия этого способа втрое. Идея заключается в том, что закрытую ёмкость нагревают на костре для получения угарного газа, который через газовую установку поступает в цилиндры двигателя внутреннего, внешнего сгорания или отопительный котёл. Работающий на угарном газе двигатель внутреннего сгорания выводит излишки тепловой энергии через выхлопную трубу в закрытую ёмкость с дровами или опилками, тем самым разогревая и способствуя дальнейшей его выработке.

Биогаз из опилок
Практическое применение технологии выработки биогаза и древесного угля для заправки автотранспорта

Когда угарный газ заканчивается, ёмкость открывается, заполняется новой порцией биомассы, а извлечённый из неё древесный уголь используется по назначению.

Пеллеты и брикеты

Пеллеты

Мнения о целесообразности производства пеллетов в домашнем хозяйстве разделились — некоторые считают, что это технологически сложно, энергоёмко и поэтому не оправдано. Основная трудность заключается в приобретении, изготовлении специального дорогостоящего оборудования, связанного с гранулированием отходов, а также высокими энергетическими затратами.

Другие считают, что ничего сложного в изготовлении оборудования нет. Для производства понадобятся: дробилка, сито, сушилка, гранулятор.

Технология производства гранул из отходов выглядит следующим образом:

  1. Готовится сырьё. Для этого перемешивают опилки с растительными остатками, ветками деревьев и т. д.
  2. Биологическое сырьё поступает в дробильное оборудование, функции которого может исполнять оборудованный лепестковыми фрезами режущий вал, установленный на циркулярную пилу.
  3. После измельчения сырьё попадает на сито, где происходит разделение мелких и крупных фракций. Мелкие фракции поступают в сушилку. Высушенный материал подаётся на гранулятор, который даже защитники теории производства пеллетов признают сложным в изготовлении устройством. Попадая в гранулятор, сырьё впрессовывается в маленькие формы и выпадает в подставленную ёмкость.
Биогаз из опилок
Самый сложный агрегат для производства пеллетов — гранулятор

Брикеты

Для производства брикетов понадобится биологическое сырьё (опилки, солома, бумага, картон, силос, торф), а также ручной пресс.

Биологическое сырьё измельчают, размачивают водой, добавляют глину до связывающей консистенции. Доля глины к сырью составляет 10% от первичной биомассы. При несоблюдении правильного соотношения глины к биомассе, брикет не будет держать форм, а при злоупотреблении глиной повысится зольность биотоплива при сгорании. Приготовленной биосмесью наполняют форму, помещают под пресс. Прессованный брикет достаётся из-под пресса, освобождается из формы и отправляется на просушку. Для просушки могут использоваться как естественные источники (солнце), так и специально оборудованные сушилки с искусственной подачей горячего воздуха. После просушки брикет готов к использованию.

Биогаз из опилок
Дробление отходов древесины для производства брикетов и пеллетов

Видео: Установка для получения биогаза

Получение биоэтанола в домашних условиях

Для изготовления этого вида биотоплива нам понадобятся знания и практический опыт, применяемые при самогоноварении.

Сначала нужно приготовить «брагу». Берём биомассу, состоящую из растительных остатков, стеблей и семян кукурузы, сахарной свёклы, пшеница, жмыха, выжимки винограда, патоки. Помещаем в бочку или бутыль. Заливаем тёплой водой (можно добавить сахара), то есть создаём условия для брожения. Перебродившую жидкость (брагу) необходимо очистить и с помощью перегонного куба продистилировать. Таким образом, образовавшийся в результате брожения 8% этиловый спирт преобразуется после перегонки в 80–90%.

Считается, что этиловый спирт является альтернативой бензину. Советуем его всё-таки использовать как присадку, чтобы не «угробить» двигатель. Более безопасно его применение в биокаминах, керосиновых лампах, примусах.

Биогаз из опилок
Схема производства биоэтанола, дающая общее представление о технологии производства жидкого топлива

Расчёт выхода этилового спирта с 10 кг сырья

Биогаз из навоза и отходов

Формулировку «биогаз» используют для обозначения образующейся при перепревании органических веществ, происходящем без доступа кислорода, смеси газов. Составляют основу биогаза метан и углекислый газ, в меньшей степени сероводород и некоторые другие газы. Удельная часть метана, содержащегося в составе биогаза, определяет его энергетическую ценность.

Сырьём для получения газообразного биотоплива могут быть трава, различные отходы, ботва культурных растений или навоз. 

Биогазовая установка привлекает простотой сооружения и обслуживания, продолжительностью протекания химической реакции, получением дешёвого газа и состоит из ёмкости (ферментатора), в которую загружается перемешанное биологическое сырьё, накопителя, системы обогрева ферментатора, перемешивателя.

Для сооружения установки для выработки биогаза необходимо оборудовать больших размеров герметичную ёмкость. Обычно это выложенная бетонными кругами или кирпичом яма. Требования к герметичности и температурному режиму являются ключевыми, определяющими целесообразность дальнейшего построения установки. Сверху ёмкость накрывается металлическим куполом, оборудованным газоотводной трубкой. Ёмкость загружается биомассой, разбавляется тёплой водой и герметично накрывается крышкой-колоколом. Воды в общей массе примерно 65–70%.

Дальнейших способов действия два:

  • массивный колокол является подвижным, он ложится на дно ёмкости и поднимается при нарастании давления образующегося биогаза, что также служит индикатором для визуального определения количества газа в ёмкости
  • колокол выполняет функцию крышки и неподвижен; в этом случае пригодится обычный манометр.

Температура ферментатора должна благоприятствовать запуску и протеканию процесса брожения. Попадая в благоприятную среду, метанообразующие (метанопроизводящие) бактерии, находящиеся в самой биомассе, начинают развиваться, увеличиваясь в массе. Процесс нарастания бактериальной массы занимает около трёх недель, по истечении которых биомасса переходит в активную фазу брожения. Для ускорения перехода биомассы в активную фазу используют закваску из функционирующего ферментатора. При активной фазе анаэробного брожения (без доступа воздуха) из ферментатора выделяется биогаз, который можно использовать в хозяйстве и быту.

Биогаз из опилок
Будущий ферментатор можно отделать кирпичом, соблюдая требования к герметичности

Выход биогаза зависит от температурного режима, который поддерживается в ёмкости, герметичности, качества биомассы, использующейся в качестве сырья, и составляет в среднем от 80–100 м³ газа из тонны разведённого сырья при теплотворной способности около 5500— 6000 ккал/м³.

Чтобы «завести» все три группы (психофильные, мезофильные и термофильные) метанопроизводящих бактерий, необходимо обеспечить поддержание температуры ферментатора (сырья) на уровне 35°C. Как показывает практика проведения экспериментов с выбором оптимальной температуры, нагрев биомассы на 10° градусов удваивает выход газа с каждого кубического метра ферментатора.

Наиболее благоприятным соотношением компонентов биомассы является 1:2, где одна часть растительных отходов перемешивается с двумя частями навоза. При смешивании навоза с опилками, соломой, торфом используют соотношение 7:3, если с домашними отходами — 4:6.

Хорошим советом будет ведение учёта работы установки с фиксацией данных о загружаемом сырье, соотношениях, количестве выхода и качестве биогаза.

Биогаз из опилок
Схема «минизавода» для производства биогаза: в качестве ферментатора используется бочка с основными приборами контроля, функцию неподвижного «колокола» выполняет крышка

При конструировании предусмотрите возможность ревизии состояния оборудования, его герметичности, очистки ферментатора и дозаправки сырьём, перемешивания и подогрева биомассы. Если планируется осуществлять большинство операций без разгерметизации колокола, тогда следует использовать систему дублирования ферментаторов и сообщающихся сосудов.

При использовании схемы дублирования установка снабжается двумя ферментаторами, которые загружаются и ремонтируются поочерёдно.

Использование принципа сообщающихся сосудов позволяет производить ежедневную дозаправку биосырьём. Для его реализации основную ёмкость ферментатора соединяют с дополнительной, соединение между ёмкостями осуществляется ниже уровня жидкости, что также выполняет функцию водяного затвора газа. Из второй ёмкости убирается определённое количество жидкости (обычно 10 часть объёма ферментатора), который заменяется таким же количеством свежего биосырья.

Биогаз из опилок
Схема биоустановки с возможностью дозаправки сырья и откачки переработанного ила

Также необходимо сделать колокол подвижным и при этом его уравновесить с целью не допустить его опрокидывания или заклинивания. Для изготовления колокола можно использовать обрезанные ёмкости от нефтепродуктов (желательно со сферическим днищем). Для искусственного утяжеления используется груз, равномерно распределённый по поверхности.

Советы по использованию биотоплива и правила хранения

Биогаз, брикеты хорошо подойдут для отопления жилища, приготовления пищи, послужат источником питания для работы переделанного под газ бензинового электрогенератора или самодельного двигателя Стирлинга. Древесный уголь пригодится при использовании мангала. Жидкое биотопливо позволяет использовать керосиновые лампы, примусы без привычной копоти, а также является идеальным средством для заправки биокаминов.

Технологии изготовления биотоплива не предусматривают длительного хранения. Жидкое топливо в сравнительно короткий период насыщается водой, пеллеты и брикеты отсыревают и расслаиваются, крошатся. Желательно полученное биотопливо тут же использовать.

Как уже указывалось выше, использование биотоплива лишено каких-либо недостатков. Основные недочёты возникают по причине несовершенства конструкций установок по его производству.

Источник: theecology.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock
detector