Установка для получения биогаза

Что же такое биогаз? Этим термином обозначают газообразный продукт, получаемый в результате анаэробной, то есть происходящей без доступа воздуха, ферментации (перепревания) органических веществ самого разного происхождения. В любом крестьянском хозяйстве в течение года собирается значительное количество навоза, ботвы растений, различных отходов. Обычно после разложения их используют как органическое удобрение. Однако мало кто знает, какое количество биогаза и тепла выделяется при ферментации. А ведь эта энергия тоже может сослужить хорошую службу сельским жителям.

Биогаз — смесь газов. Его основные компоненты: метан (CH4) – 55-70% и углекислый газ (СО2) – 28-43%, а также в очень малых количествах другие газы, например – сероводород (H2S).

В среднем 1 кг органического вещества, биологически разложимого на 70%, производит 0,18 кг метана, 0,32 кг углекислого газа, 0,2 кг воды и 0,3 кг неразложимого остатка.

Факторы, влияющие на производство биогаза.


скольку разложение органических отходов происходит за счет деятельности определенных типов бактерий, существенное влияние на него оказывает окружающая среда. Так, количество вырабатываемого газа в значительной степени зависит от температуры: чем теплее, тем выше скорость и степень ферментации органического сырья. Именно поэтому, вероятно, первые установки для получения биогаза появились в странах с теплым климатом. Однако применение надежной теплоизоляции, а иногда и подогретой воды позволяет освоить строительство генераторов биогаза в районах, где температура зимой опускается до -20?С. Существуют определенные требования и к сырью: оно должно быть подходящим для развития бактерий, содержать биологически разлагающееся органическое вещество и в большом количестве воду (90—94%). Желательно, чтобы среда была нейтральной и без веществ, мешающих действию бактерий: например, мыла, стиральных порошков, антибиотиков.

Для получения биогаза можно использовать растительные и хозяйственные отходы, навоз, сточные воды и т. п. В процессе ферментации жидкость в резервуаре имеет тенденцию к разделению на три фракции. Верхняя — корка, образованная из крупных частиц, увлекаемых поднимающимися пузырьками газа, через некоторое время может стать достаточно твердой и будет мешать выделению биогаза. В средней части ферментатора скапливается жидкость, а нижняя, грязеобразная фракция выпадает в осадок.

Бактерии наиболее активны в средней зоне. Поэтому содержимое резервуара необходимо периодически перемешивать — хотя бы один раз в сутки, а желательно — до шести раз. Перемешивание может осуществляться с помощью механических приспособлений, гидравлическими средствами (рециркуляция под действием насоса), под напором пневматической системы (частичная рециркуляция биогаза) или с помощью различных методов самоперемешивания.


Установки для получения биогаза. В Румынии генераторы биогаза получили широкое распространение. Одна из первых индивидуальных установок (рис.1А) была введена в эксплуатацию еще в декабре 1982 года. С тех пор она успешно обеспечивает газом три соседствующие семьи, имеющие каждая по обычной газовой плите с тремя конфорками и духовкой.
Ферментатор находится в яме диаметром около 4 м и глубиной 2 м (объем примерно 21 м3), выложенной изнутри кровельным железом, сваренным дважды: сначала электрической сваркой, а затем, для надежности, газовой. Для антикоррозионной защиты внутренняя поверхность резервуара покрыта смолой. Снаружи верхней кромки ферментатора сделана кольцевая канавка из бетона глубиной примерно 1 м, выполняющая функцию гидрозатвора; в этой канавке, заполненной водой, скользит вертикальная часть колокола, закрывающего резервуар. Колокол высотой около 2,5 м — из листовой двухмиллиметровой стали. В верхней его части и собирается газ.

Автор этого проекта выбрал вариант собирания газа в отличив от других установок с помощью трубы, находящейся внутри ферментатора и имеющей три подземных ответвления — к трем хозяйствам. Кроме того, вода в канавке гидрозатвора проточная, что предотвращает обледенение в зимнее время.


Ферментатор загружается примерно 12 м3 свежего навоза, поверх которого выливается коровья моча (без добавления воды. Генератор начинает работать через 7 дней после наполнения.

Похожую компоновку имеет еще одна установка (рис. 1Б). Ее ферментатор сделан в яме, имеющей квадратное поперечное сечение размерами 2х2 и глубиной примерно 2,5 м. Яма облицована железобетонными плитами толщиной 10-12 см, оштукатурена цементом и покрыта для герметичности смолой. Канавка гидрозатвора глубиной около 50 см также бетонная, колокол сварен из кровельного железа и может на четырех «ушках» свободно скользить по четырем вертикальным направляющим, установленным на бетонном резервуаре. Высота колокола примерно 3 м, из которых 0,5 м погружено в канавку.

 

Установка для получения биогаза

 

Рис. 1 Схема установки для получения биогаза. А — с коническим колоколом, Б с пирамидальным колоколом
1 -яма фермента с сырьем, 2 — колокол, 3 — выпускной патрубок, 4 — трубопровод (шланг) подачи биогаза, 5 канавка гидрозатвора с водой

При первом наполнении в ферментатор было загружено 8 м3 свежего коровьего навоза, а сверху запито примерно 400 л коровьей мочи. Через 7— 8 дней установка уже полностью обеспечивала владельцев газом.


Аналогичную конструкцию имеет и генератор биогаза, рассчитанный на прием 6 м3 смешанного навоза (от коров, овец и свиней). Этого оказалось достаточно, чтобы обеспечить нормальную работу газовой плиты с тремя конфорками и духовкой.
Еще одна установка отличается  конструктивной деталью: рядом с ферментатором уложены присоединенные к нему с помощью Т-образного шланга три большие тракторные камеры, соединенные и между собой (рис. 2).

 

Установка для получения биогаза

 

Рис. 2 Разбухающий резервуар из тракторных камер

В ночное время, когда биогаз не используется и накапливается под колоколом, возникает опасность, что последний из-за избыточного давления опрокинется. Резиновый резервуар служит дополнительной емкостью. Ферментатора размером 2х2×1,5 м вполне достаточно для работы двух горелок, а при увеличении полезного объема установки до 1 м3 можно получить количество биогаза, достаточное и для обогрева жилища. Особенность этого варианта установки — устройство колокола 138 см и высотой 150 см из прорезиненного полотна, применяемого для изготовления надувных лoдок. Ферментатор представляет собой металлический резервуар 140х380 см и имеет объем 4,7 м3. Колокол вводится в находящийся в ферментаторе навоз на глубину не менее 30 см для обеспечения гидравлического заслона выходу биогаза в атмосферу. В верхней части разбухающего резервуара предусмотрен кран, соединенный со шлангом; по нему газ поступает к газовой плите с тремя конфорками и колонке для нагрева воды. Чтобы обеспечить оптимальные условия для работы ферментатора, навоз смешивается с горячей водой. Наилучшие результаты установка показала при влажности сырья 90% и температуре 30-35°.


Для обогрева ферментатора используется и эффект теплицы. Над емкостью сооружается металлический каркас, который покрывают полиэтиленовой пленкой: при неблагоприятных погодных условиях она сохраняет тепло и позволяет заметно ускорить процесс разложения сырья.

В Румынии генераторы биогаза используются и в государственных или кооперативных хозяйствах. Вот один из них. Он имеет два ферментатора емкостью по 203 м3, закрытых каркасом с полиэтиленовой пленкой (рис. 3). Зимой навоз обогревается горячей водой. Производительность установки составляет 300-480 м3 газа в день. Такого количества вполне хватает для обеспечения всех потребностей местного агропромышленного комплекса.

 

Установка для получения биогаза

 

Рис. 3 Схема установки для получения биогаза повышенной производительности
1- трубопровод выхода биогаза, 2 — колокол, 3 — корпус Ферментатора, 4 — сырье, 5 -система подогрева сырья, 6 -раскосы металлической конструкции колокола, 7 — направляющая труба колокола, 8 — металлический каркас теплицы, 9 — трубопровод подачи горячей воды

Практические советы.


к уже отмечалось, решающую роль. в развитии процесса ферментации играет температура: нагрев сырья с 15? до 20° может вдвое увеличить производство энергоносителя. Поэтому часто генераторов имеет специальную систему подогрева сырья, однако большинство установок не оборудовано ею; они используют лишь тепло, выделяемое в процессе самого разложения органических веществ. Одним из важнейших условий нормальной работы ферментатора является наличие надежной ТЕПЛОИЗОЛЯЦИИ. Кроме того, необходимо свести к минимуму потери тепла при очистке и наполнении бункера ферментатора.

Необходимо помнить также о необходимости обеспечения биохимического равновесия, Иногда темпы производства бактериями кислот выше, чем темпы их потребления бактериями второй группы, В этом случае кислотность массы растет, а выработка биогаза снижается. Положение может быть исправлено либо уменьшением ежедневной порции сырья, либо увеличением его растворимости (по возможности, горячей водой), либо, наконец, добавкой нейтрализующего вещества — например известкового молока, стиральной или питьевой соды.

Производство биогаза гложет уменьшиться за счет нарушения соотношения между углеродом и азотом. В этом случае в ферментатор вводят вещества, содержащие азот, — мочу или в небольшом количестве соли аммония, используемые обычно в качестве химических удобрений (50 — 100 г на 1 м3 сырья).


Следует помнить, что высокая влажность и наличие сероводорода (содержание которого в биогазе может достигать 0,5%) стимулируют повышенную коррозию металлических частей установки. Поэтому состояние всех остальных элементов ферментатора следует регулярно контролировать и в местах повреждений тщательно защищать: лучше всего свинцовым суриком — в один или два слоя, а затем еще двумя слоями любой масляной краски.

В качестве трубопровода для транспортировки биогаза от выпускного патрубка в верхней части колокола установки до потребителя могут использоваться как трубы (металлические или пластмассовые), так и резиновые шланги. Их желательно вести в глубокой траншее, чтобы исключить разрывы из-за замерзания зимой конденсировавшейся воды. Если же транспортировка газа с помощью шланга осуществляется по воздуху, то для отвода конденсата необходимо специальное устройство. Самая простая схема такого приспособления представляет собой U-образную трубку, присоединенную к шлангу в самой нижней его точке (рис. 4). Длина свободной ветви трубки (х) должна быть больше, чем выраженное в миллиметрах водяного столба давление биогаза. По мере того как в трубку стекает конденсат из трубопровода, вода выливается через ее свободный конец без утечки газа.

 

Установка для получения биогаза


 

Рис. 4 Схема устройства для отвала конденсированной воды
1 — шланг подачик биогаза, 2 — U-образная трубка, 3 — конденсированная вода

В верхней части колокола целесообразно также предусмотреть патрубок для установки манометра, чтобы по величине давления судить о количестве накопленного биогаза.

Опыт эксплуатации установок показал, что использование в качестве сырья смеси разных органических веществ дает больше биогаза, чем при загрузка ферментатора одним из компонентов. Влажность сырья рекомендуется немного уменьшать зимой (до 88—90%) и повышать летом (92—94%). Вода, которую используют для разбавления, должна быть теплой (желательно 35—40°). Сырье подается порциями, по крайней мере один раз в сутки. После первой загрузки ферментатора нередко сначала вырабатывается биогаз, который содержит более 60% углекислого газа и поэтому не горит. Этот газ удаляют в атмосферу, и через 1 —3 дня установка начнет функционировать нормально.

Опубликовано:
По материалам журнала «Техниум», СРР
«Моделист-конструктор», №1/1987

Источник: www.freeseller.ru

Состав и виды


Биогазовая установка

Биогазом называется газ, полученный в результате трёхфазного биохимического процесса над биомассой, проходящего в герметичных условиях.

Процесс разложения биомассы последователен: сперва она подвергается воздействию гидролизных бактерий, затем кислотообразующих и в конце метанобразующих. Материалом для микроорганизмов на каждом этапе служит продукт деятельности предшествующего этапа.

На выходе приблизительный состав биогаза выглядит так:

  • метан (от 50 до 70%);
  • углекислый газ (от 30 до 40%);
  • сероводород (~2%);
  • водород (~1%);
  • аммиак (~1%);

На точность пропорций влияет используемое сырьё и технология получения газа. Потенциалом для горения обладает метан, чем его процент выше, тем лучше.

Опыт применения горючего болотного газа имеют древние культуры, датируемые более трёх тысячелетним возрастом (Индия, Персия или Ассирия). Научное обоснование сформировалось гораздо позже. Химическая формула метана СН4 была открыта учёным Джоном Дальтоном, вхождение метана в состав болотного газа обнаружено Гемфри Дэви. Большую роль на развитии отрасли альтернативной энергии сыграла Вторая мировая война, требующая от воюющих сторон огромной потребности в энергоресурсах.


Обладание СССР громадными запасами нефти и природного газа привело к невостребованности других технологий получения энергии, исследование биогаза в основном было предметом интереса академической науки. На текущий момент ситуация поменялась настолько, что, помимо промышленной добычи разных видов топлива, создать биогазовую установку для своих целей под силу любому человеку.

Установка для получения биогаза
Устройство установки

Биогазовая установка – комплекс оборудования, предназначенного для получения биогаза из органического сырья.

По типу подачи сырья выделяют следующие виды биогазовых установок:

  • с порционной подачей;
  • с непрерывной подачей;

По типу обработки сырья:

  1. Без автоматического перемешивания сырья и поддерживания необходимой температуры – комплексы с минимальной комплектацией, подходят для малых хозяйств (схема 1).
  2. С автоматическим перемешиванием, но без поддержки необходимой температуры – также служит небольшим хозяйствам, эффективней предыдущего типа.
  3. С поддержкой необходимой температуры, но без автоматического перемешивания.
  4. С автоматическим перемешиванием сырья и поддержкой температуры.

Принцип работы

Принцип работы биогазовой установки

Процесс преобразования органического сырья в биогаз называется ферментацией. Сырьё загружается в специальную ёмкость, обеспечивающую надёжную защиту биомассы от доступа кислорода. Событие, происходящее без вмешательства кислорода, называется анаэробным.

Под воздействием специальных бактерий в анаэробной среде начинает происходить ферментация. По мере развития брожения сырьё покрывается коркой, которую необходимо регулярно разрушать. Разрушение производится с помощью тщательного перемешивания.

Перемешивать содержимое требуется минимум два раза в сутки, не нарушая при этом герметичности процесса. Кроме удаления корки промешивания позволяет равномерно распределить кислотность и температуру внутри органической массы. В результате этих манипуляций вырабатывается биогаз.

Полученный газ собирается в газгольдере, оттуда по трубам доставляется потребителю. Биоудобрения, полученные после переработки исходного сырья, можно использовать как пищевую добавку для животных или добавлять в почву. Такое удобрение называется компостным перегноем.

Биогазовая установка включает в себя следующие элементы:

  • ёмкость гомогенизации;
  • реактор;
  • мешалки;
  • резервуар для хранения (gas-holder);
  • комплекс отопления и смешивания воды;
  • газовый комплекс;
  • комплекс насосов;
  • сепаратор;
  • датчики контроля;
  • КИПиА с визуализацией;
  • система безопасности;

Пример биогазовой установки промышленного типа приведен на схеме 2.

Используемое сырьё

ТраваРазложение любых остатков животного или растительного происхождения выделяет горючий газ в различной степени. Хорошо подходят для сырья смеси различного состава: навоз, солома, трава, разные отходы и т.д. Для химической реакции требуется влажность в 70%, поэтому сырьё необходимо разбавлять водой.

Неприемлемо наличие в органической биомассе очистительных средств, хлора, стиральных порошков, так как они препятствуют химическим реакциям и могут повредить реактор. Также не подходит для реактора сырьё с опилками хвойных деревьев (содержащие смолы), с высокой долей лигнина и с превышением порога влажности в 94%.

Растительное. Растительное сырьё великолепно подходит для производства биогаза. Максимальный выход топлива даёт свежая трава – из тонны сырья получается около 250 м3 газа с долей метана в 70%. Кукурузный силос немногим меньше – 220 м3. Ботва от свеклы – 180 м3.

Можно использовать в качестве биомассы практически любые растения, сено или водоросли. Недостаток применения заключается в длительности производственного цикла. Процесс получения биогаза занимает до двух месяцев. Сырьё должно обязательно быть мелко измельчено.

Животное. Отходы перерабатывающих, молочных предприятий, со скотобоен и т.д. пригодны для биогазовой установки. Максимальный выход топлива дают животные жиры – 1500 м3 биогаза с долей метана в 87%. Основной недостаток – дефицит. Животное сырьё также должно быть измельчено.

Экскременты. Главное достоинство навоза его дешевизна и легкодоступность. Недостаток – количество и качество биогаза ниже, чем от других видов сырья. Лошадиные и коровьи экскременты можно перерабатывать сразу. Производственный цикл займёт приблизительно две недели и даст выход объемом 60 м3 с 60% содержанием метана.

Схемы работы

Схема 1 – биогазовая установка без автоматического перемешивания сырья:

Схема работы биогазовой установки

Схема 2 – биогазовая установка промышленного типа:

Схема получения биогаза в промышленности

Полезные советы

Биогазовая установка

Напоследок приведём список полезной информации, которая поможет вам избежать дополнительных проблем при создании биогазовой установки:

  1. Практика говорит, что для обогрева жилого помещения площадью 50 м2 необходимо затратить газа объёмом 3,5 м3 в час.
  2. Нежелательно применять биогаз напрямую для приготовления пищи, потому что могут измениться вкусовые качества.
  3. Необходимо избегать попадания в сырьё твёрдых предметов (гаек, болтов и т.п.), потому что оборудование может испортиться.

Чтобы биогаз стабильно горел, он должен соответствовать определённым стандартам:

  • содержание метана минимум 65% (оптимальное содержание от 90 до 95%);
  • должны отсутствовать водяные пары, водород и углекислый газ;
  • нормальное давление при подаче газа 12,5 бар;

В случае, если при скачке давления или по другим причинам газ потухнет, а его подача будет продолжаться, может привести к трагическим последствиям. Поэтому следует использовать современное оборудование с датчиками газового контроля.

Источник: slarkenergy.ru

Установка для получения биогаза Уже почти три года назад я делал статью про биогазовые исследования, которые мы проводили в Томске. Статья в то время вызвала значительный интерес и даже сейчас мне на почту приходят письма с просьбой подробней рассказать об этой технологии и перспективах её практического внедрения. Мы не бросили развивать эту тему, накопилось много интересных мыслей и новостей, о которых хочется рассказать, поэтому заинтересованных милости просим под кат.

Что нового?

Самая главная новость — тема до сих пор жива. Идея перерабатывать отходы в что-то полезное и даже выгодное сама по себе греет душу. Напоминаю, что биогазовые технологии позволяют переработать органические отходы (навоз, канализационные стоки и т.п.) в горючий газ и биоудобрение.

Получаемое удобрение можно использовать для увеличения урожайности практически любых растений. К примеру, увеличение урожайности пшеницы, которое было зафиксировано в независимых испытаниях на Алтае по сравнению с контрольными участками где удобрение не использовалось, составило порядка 30 процентов.

На треть! При этом затраты на удобрения составили не более 10 процентов от суммы дополнительно полученной прибыли, что само по себе отличный результат.

В последнее время появились патенты по технологии ускорения получения биогаза, однако применить их в реальных установках пока не представляется возможным, но тот факт, что в этой области продолжаются разработки, безусловно, радует. Самой успешной (на наш взгляд) является технология, описанная в другом патенте, суть которого заключается в добавлении на разных стадиях процесса простой воды, но с измененным окислительно-восстановительным потенциалом. Авторы молодцы, что досконально разобрались в биологической сути процесса.

Биогаз или биоудобрения?

Как и ранее я остаюсь сторонником того, что биогазовые технологии трудно позиционировать как исключительно энергетические. В первую очередь, эти технологии хороши для облегчения экологической ситуации, связанной с утилизацией биологических отходов, которых вокруг сельскохозяйственных предприятий скапливается огромное количество. Это настоящая проблема, которая помимо экологического вреда часто является катализатором вспышек опасных инфекций.

Конечно, в процессе переработки выделяется большое количество биогаза, но он требует тщательной очистки, осушения, сжатия и с ним больше хлопот, чем выгод. Это, в первую очередь, связано с получением из биогаза электричества, что требует огромных затрат. Поэтому разумнее всего, особенно в России, утилизировать биогаз до тепла, которое можно использовать для поддержания самого биогазового процесса и для отопления зданий и сооружений. Мы — холодная страна и тепло будет необходимо всегда. Если не использовать биогаз для генерации электричества, то становится более выгодно строительство и самих биогазовых станций.

Исследовательская установка

Так случилось, что в процессе наших исследований для экспериментальной установки нам требовался навоз в количестве 40-50 кг в сутки. Живем мы в городе, коров у нас нет, как источник биомассы мы себя рассматривали в самом крайнем случае и мы стали искать поставщика навоза. Пришлось навоз возить с пригорода. Приезжаем в деревню и находим подворье с коровами. Зима. Стучимся в дверь, открывает хозяин и мы просим у него навоза. Изумление в глазах. Оно вам зачем, ребята? Говорим, мол, ученые, делаем эксперименты. Надо. Идите, говорит дедок, по добру по здорову. А если будем покупать? По 50 рублей за ведро? Через некоторое время в деревушке под Томском стали ходить легенды о том, что из города ездят чудаки, которые платят деньги за… Ну вы поняли. Но проблемы с сырьем решены.

Установка состоит из трех специализированных ёмкостей, связанных собой трубопроводами с запорной (управляемой) арматурой (задвижками). Основой установки является специализированная ёмкость определенного объема, называемой ферментером, также установка содержит ёмкость для пробоподготовки сырья, систему контроля и автоматизации процесса. Система автоматизации и управления установкой — собственной разработки. Ничего особо сложного в ней нет.

Ферментеры подлежат монтажу и утеплению для максимального сохранения тепловой энергии, особенно если установка будет в дальнейшем эксплуатироваться на открытой площадке. Самое важное — сделать верный расчет объема главного ферментера (конечно с некоторым запасом).

Конечно, выход биогаза зависит от качества исходного сырья, если можно применить термин «качество» к навозу. Но на самом деле, исходное сырье имеет важнейшее значение. Лучше всего, чтобы сырье было без примесей, посторонних загрязнений, без плесени и ПАВов. Главный закон биогазовой установки — путь сырья к загрузке должен быть как можно короче. Выход биогаза из навоза различных животных, конечно, разный. Это зависит от особенностей пищеварения, что определяет состав и структуру отходов.

В биогазовую станцию может быть добавлены другие органические отходы, такие как очистки овощей, фруктов, свежая трава, хозяйственные стоки и т.п. Это даже лучше, чтобы сырье для станции было смесью различных отходов. Это улучшает процесс переработки, делает его более стабильным, а выход биогаза — больше. При этом на однотипном сырье, к примеру, на чистых свиных стоках или курином помете процесс вообще может остановиться, так как эти субстраты сильно токсичны и их обязательно надо разбавлять другими отходами, обеспечивая буферизацию сырья.

Выходящий из установки газ называется биогазом. Это горючий газ сложного состава. В нем две трети метан, остальное — углекислый газ, сероводород, примеси водорода, аммиака, пары воды. Накапливается газ в специальном газонепроницаемом мягком мешке — газгольдере.

Если накопленный газ очистить от углекислоты и других опасных примесей получаем биометан — полный аналог природного газа. Однако, очистка биогаза дорогая процедура и направлена, в первую очередь, для того, чтобы получать электричество или заправлять автомобили. Если такая задача не стоит — то биогаз можно использовать без особой очистки для получения тепла и горячей воды. Именно для этих целей (по нашему мнению) целесообразней всего использовать биогазовые установки в наших условиях.

Перспективы биогазовых технологий

Для России. И, конечно, это мое частное мнение. Для начала я бы разделил этот вопрос на две части. Промышленное использование биогазовой технологии и различные частные практики.

Промышленное использование биогазовых технологий слабо развивается в принципе из-за практического отсутствия добротных технологий, правового вакуума в законодательстве и жесточайшей коррупции. Безусловно, без бюджетного плеча такие технологии достойно развить не удастся, но как быть с тем, чтобы под маркой развития биогаза не проворачивались коррупционные схемы различных деятелей от инноваций — я не знаю. Остается направление использования биогазовых станций частниками. Вот здесь наблюдается некий наш российский феномен, о котором хочется поговорить особо. Во-первых, в природе нашего человека заложен принцип по возможности никогда ни за что не платить. По крайней мере существенные деньги. А лучше всего халява! Вот это свойство используют всякие жулики, которые завалили интернет видео и сайтами с предложениями за три копейки построить биогазовую станцию, получать биогаз в неограниченных объемах и забыть про все проблемы. Именно такие деятели дискредитировали саму тему биогаза в России, которая, кстати, очень активно развивается сейчас во всем мире. Особенно в Китае. Биогазовая установка не может стоить дешево.

Это все-же биотехнология, которая имеет ряд особенностей, требует современного контроллинга, определенной квалификации операторов и т.д. Это не сарайная технология, она требует нового понимания сути сельскохозяйственного производства, принципа неразрывности всех процессов — от подготовки сырья, транспортировки, ветеринарных манипуляций, навозоудаления, заканчивая маркетингом биоудобрений и энергетическим аудитом производства. Только в этом случае биогазовые технологии дадут необходимый эффект. Какой смысл городить биогазовые станции в старых коровниках и на СХ предприятиях прошлого века? Почему не делать новые проекты крупных животноводческих комплексов с интеграцией всех наиболее перспективных и интересных технологий, которые существуют? Ведь очевидно, что именно здесь заложен будущий успех. Опять же — это мое мнение.

Эффект кулака

С одной стороны мы видим большое количество самоделок биогазовых станций, с другой — наблюдается иной феномен. Эффект кулака. Что я имею ввиду? Есть люди, которые занимаются фермерским хозяйством. Такие вот современные кулаки. Хозяйственные и ответственные с одной стороны, но и независимые с другой.

Такие люди дают другой запрос. Они через биогазовую установку хотят приобрести независимость. Газ для себя, никому не кланяться в ноги. Такие люди готовы покупать установки хорошего качества и дорого. Именно на этот необычный сегмент потребителей стоит обратить особое внимание. В этой связи сейчас наша группа ориентирована на создание комплексного решения — минифермы для частного фермера с установкой биогазового синтеза на 500-600 м3 газа в месяц. Для решения этой задачи хватит дюжины дойных коров. Проект самого коровника уже есть, остается его связать с биогазовой установкой, зарегистрировать и придать четкий технический и юридический статус этого животноводческого комплекса.

Почему такой подход? Поясняю. Станция предназначена для независимого отопления усадьбы фермера (до 200м3) и обеспечения горячей водой как его дома, так и на производстве. Электричество из биогаза получать не предусматривается — дорого. Поддержкой проекта (помимо биогаза) является использование биоудобрения. Как для себя, так и для продажи под единым торговым брендом, который набирает обороты сейчас.

Это помогает формально окупить установку за два-три года. Не за два-три месяца, как в рекламе в Интернет или на YouTube, а именно за пару-тройку лет. Чтобы проект такой минифермы довести до ума, нужны электронщики, специалисты по промышленной автоматизации, специалисты- проектировщики легкий зданий и сооружений, эксперты по пожарной безопасности, люди, которые хорошо знают особенности технических регламентов, всяких ГОСТов, СНИПОВ, нужен хороший юрист (на всякий случай), маркетолог, патентовед, конструкторы. Мы делаем этот проект открытым, желающие могут предложить свои компетенции. Так часто бывало, что только всем миром можно что-то сделать. Что-то стоящее. Напишите мне [email protected] если вам эта тема интересна и( или) есть собственные идеи.

Источник: habr.com


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock
detector