Сообщение на тему минеральные удобрения


Органические удобрения применение. Лучший вид полных удобрений. Важной составной их частью является гумус — вещество, восcтанавливающие структуру почвы, улучшающее её поглотительную способность, воздушный и водяной режим, активизирующее деятельность микрофлоры. Органические удобрения обогащают почвы макро- и микроэлементами, витаминами. Навоз-(смешанный, свиной, овечий, конский, крупного рогатого скота) — основное органическое удобрение. В 20 тоннах навоза содержится: азота — 100 кг, фосфора — 50 кг,калия — 120 кг. Наиболее эффективно использовать навоз в свежем виде осенью (октябрь, ноябрь) под перекопку почвы, перед посадкой деревьев и для удобрения растений в приствольных канавках. Если навоз завезён весной или летом, его следует обязательно укрыть настом земли 15-20 см. Перегной — перепревший навоз, лучший вид органического удобрения для подкормки растений. Птичий помёт — наиболее концентрированный вид органических удобрений.
держит азота 2-3%, фосфора 1.5-2%, калия 1%. Под одно дерево вносят 3-5 кг. вещества. Фекалии — содержат много азота и фосфора, мало калия. Лучше всего вносить осенью (не сбраживая) в приствольные канавки и сразу же урывать слоем земли 10-12 см. Под одно дерево 5-6 кг. Компост — органическое удобрение, получаемое из всевозможных отходов: ботва растений, солома, бумага, листья, старые консервные банки, мелкие ветки, пищевые отбросы, гнилые овощи и картофель, бытовой и мелкий строительный мусор — всё кроме стекла, кирпича, плёнки, падалицы фруктов. Для компостирования отходов в конце участка роют яму размером 0.7-0.8 м, обязательно с деревянной крышкой. Некоторые садоводы-любители часто компостируют отходы следующим образом: в междурядьях сада или винограда роют канаву глубиной 30 см., на ширину лопаты укладывают в неё собранные за день отходы и тут же засыпают землёй, продолжая удлинять канаву. Минеральные удобрения. Особенностью минерального удобрения растений является повышенная их потребность в азоте и пониженная в фосфоре (4:1); вынос калия также велик, но его много содержится в глине, недостаток ощущается в песчаной почве. Обозначения основных элементов и соединений: азотные -N, фосфорные — P2O5, калийные — K2O, полные или комплексные минеральные удобрения NPK, к макроэлементам также относятся кальций, магний, железо и сера, к микроэлементам — цинк, молибден, марганец, бор, медь.

Источник: znanija.com


Федеральное агентство по образованию

Тверской государственный технический университет

Кафедра «Технологии полимерных материалов»

Реферат

Производство минеральных удобрений

Выполнила: Томилина О.С.

ФАС, группа БТ-0709

Проверил: Комаров А. М.

Тверь 2010

Минеральными удобрениями называют соли, содержащие элементы, необходимые для питания растений и вносимые в почву для получения высоких и устойчивых урожаев. Минеральные удобрения являются одним из важнейших видов продукции химической промышленности. Рост численности населения выдвигает перед всеми странами мира одну и ту же проблему – умелое управление способностью природы воспроизводить жизненные ресурсы и прежде всего продовольственные. Задача расширенного воспроизводства продуктов питания уже давно решается применением в сельском хозяйстве минеральных удобрений. Научными прогнозами и перспективными планами предусматривается дальнейшее увеличение мирового выпуска минеральных и органоминеральных удобрений, удобрений с регулируемым сроком действия.


Производство минеральных удобрений — одна из важнейших подотраслей химической промышленности, его объем во всем мире составляет более 100млн. т в год. В наибольших количествах вырабатывают и потребляют соединения натрия, фосфора, калия, азота, алюминия, железа, меди, серы, хлора, фтора, хрома, бария и др.

Классификация минеральных удобрений

Минеральные удобрения классифицируют по трем главным признакам: агрохимическому назначению, составу и свойствам.

1. По агрохимическому назначению удобрения делят на прямые, являющиеся источником питательных элементов для растений, и косвенные, служащие для мобилизации питательных веществ почвы улучшением ее физических, химических и биологических свойств. К косвенным удобрениям принадлежат, например, известковые удобрения, применяемые для нейтрализации кислых почв.

Прямые минеральные удобрения могут содержать один или несколько разных питательных элементов.

2. По количеству питательных элементов удобрения подразделяют на простые (одинарные) и комплексные.

В простые удобрения входит только один из трех главных питательных элементов. Соответственно простые удобрения делят на азотные, фосфорные и калийные.


Комплексные удобрения содержат два или три главных питательных элемента. По числу главных питательных элементов комплексные удобрения называют двойными (например, типа NP или РК) или тройными (NPK); последние также называют полными. Удобрения, содержащие значительные количества питательных элементов и мало балластных веществ, называют концентрированными

Комплексные удобрения, кроме того, разделяют на смешанные и сложные. Смешанными называют механические смеси удобрений, состоящие из разнородных частиц, получаемые простым тукосмешением. Если же удобрение, содержащее несколько питательных элементов, получается в результате химической реакции в заводской аппаратуре. Оно называется сложным.

Удобрения, предназначенные для питания растений элементами, стимулирующими рост растений и требующимися в весьма малых количествах, называются микроудобрениями, а содержащиеся в них питательные элементы – микроэлементами. Такие удобрения вносят в почву в очень небольших количествах. К ним относятся соли, содержащие бор, марганец, медь, цинк и другие элементы.

3. По агрегатному состоянию удобрения подразделяют на твердые и жидкие (аммиак, водные растворы и суспензии).


Большое значение имеют физические свойства удобрений. Водорастворимые удобрительные соли должны быть сыпучими, легко рассеиваться, не быть сильно гигроскопичными, не слеживаться при хранении; должны обладать такими, чтобы сохраняться на почве в течение некоторого времени, не слишком быстро вымываться дождевой водой и сдуваться ветром. Этим требованиям в наибольшей мере обладают крупнокристаллические и гранулированные удобрения. Гранулированные удобрения можно вносить не поля механизированными методами с использованием туковых машин и сеялок в количествах, строго соответствующих агрохимическим требованиям.

Фосфорные удобрения

Фосфорные удобрения в зависимости от их состава в различной степени растворимы в почвенных растворах и, следовательно, неодинаково усваиваются растениями. По степени растворимости фосфорные удобрения разделяют на водорастворимые, усвояемые растениями, и нерастворимые фосфаты. К водорастворимым относятся простой и двойной суперфосфаты. К усвояемым, т.е. растворимым в почвенных кислотах, относятся преципитат, термофосфат, плавленые фосфаты и томас-шлак. Нерастворимые удобрения содержат трудноусваемые соли фосфата, растворимые только в сильных минеральных кислотах. К ним фосфоритная мука, апатиты, костяная мука.


Сырьем для производства элементарного фосфата, фосфорных удобрений и других соединений фосфора служат природные фосфаты: апатиты и фосфориты. В этих рудах фосфор находится в нерастворимой форме, главным образом в виде фторапатита Ca5F(PO4)3 или гидроксилапатита Ca5OH(PO4)3. Для получения легкоусваиваемых фосфорных удобрений, применяемых в любых почвах, требуется перевести нерастворимые фосфорные соли природных фосфатов в водорастворимые или легкоусваемые соли. В этом и состоит основная задача технологии фосфорных удобрений.

Растворимость фосфорнокислых солей повышается по мере увеличения их кислотности. Средняя соль Са3(РО4)2 растворима лишь в минеральных кислотах, СаНО4 растворима в почвенных кислотах, а наиболее кислая соль СаН2РО4)2 растворима в воде. В производстве фосфорных удобрений стремятся получить возможно большую часть фосфора в виде монокальцийфосфата Са(Н2РО4)2. Перевод нерастворимых природных солей в растворимые осуществляется разложением их кислотами, щелочами,нагреванием (термическая возгонка фосфора). Одновременно с получением растворимых солей стремятся получить фосфорные удобрения с возможно большей концентрацией фосфора.


Производство суперфосфата

Химическая промышленность выпускает простой и двойной суперфосфаты. Простой суперфосфат – самое распространенное фосфорное удобрение. Он представляет собой порошок (или гранулы) серого цвета, содержащий в основном монофосфат кальция Са(Н2РО4)2*Н2О и сульфат кальция СаSO4*0,5Н2О. В состав суперфосфата входят примеси: фосфаты железа и алюминия, кремнезем, а также фосфорная кислота. Сущность производства суперфосфата состоит в разложении природных фосфатов серной кислотой. Процесс получения суперфосфата при взаимодействии серной кислоты с кальцийфторапатитом является многофазным гетерогенным процессом, протекающим в основном в диффузионной области. Этот процесс можно условно разбить на два этапа. Первый этап – это диффузия серной кислоты к частицам апатита, сопровождаемая быстрой химической реакцией на поверхности частиц, которая идет до полного израсходования кислоты, и кристаллизация сульфата кальция:

Ca5F(PO4)3 + 5H2SO4+2,5H2O=5(CaSO4*0,5H2O)+H3PO4+HF+Q (а)

Второй этап – диффузия образовавшейся фосфорной кислоты в порах неразложившихся частиц апатита, сопровождаемая реакцией

Ca5F(PO4)3+7H3PO4+5H2O=5Ca(H3PO4)2*H2O+HF+Q (б)


Образующийся монокальцийфосфат находится сначала в растворе, при перенасыщении которого начинает кристаллизоваться. Реакция (а) начинается сразу же после смещения и заканчивается в реакционной суперфосфатной камере в течении 20-40 мин в период схватывания и затвердения суперфосфатной массы, которые происходят за счет сравнительно быстрой кристаллизации малорастворимого сульфата кальция и перекристаллизации полугидрата в ангидрит по уравнению реакции

2CaSO4*0,5H2O=2CaSO4+H2O

Последующая стадия процесса – созревание суперфосфата, т.е. образование и кристаллизация монокальцийфосфата, происходит медленно и заканчивается лишь на складе (дозревание) при вылеживание суперфосфата в течение 6-25сут. Малая скорость этой стадии объясняется замедленной диффузией фосфорной кислоты через образовавшуюся корку монокальцийфосфата, покрывающую зерна апатита, и крайне медленной кристаллизацией новой твердой фазы Са(Н2РО4)22О.

Оптимальный режим в реакционной камере определяется не только кинетикой реакций и диффузией кислот, но и структурой образовавшихся кристаллов сульфата кальция, которая влияет на суммарную скорость процесса и качество суперфосфата. Ускорить диффузионные процессы и реакции (а) и (б) можно повышением начальной концентрации серной кислоты до оптимальной температуры.


Наиболее медленным процессом является дозревание. Ускорить дозревание можно охлаждением суперфосфатной массы и испарением из нее воды, что способствует кристаллизации монокальцийфосфата и повышает скорость реакции (б) вследствие увеличения концентрации Н3РО4 в растворе. Для этого на складе перемешивают и распыляют суперфосфат. Содержание Р2О5 в готовом суперфосфате примерно в два раза ниже, чем в исходном сырье, и составляет при переработке апатитов 19-20% Р2О5.

Готовый суперфосфат содержит некоторое количество свободной фосфорной кислоты, увеличивающей его гигроскопичность. Для нейтрализации свободной кислоты суперфосфат смешивают нейтрализующими твердыми добавками или аммонизируют, т.е. обрабатывают газообразным аммиаком. Эти мероприятия улучшают физические свойства суперфосфата – уменьшают влажность, гигроскопичность, слеживаемость, а при аммонизации вводится еще один питательный элемент – азот.

Существуют периодические, полунепрерывные и непрерывные способы производства суперфосфата. В настоящее время большинство действующих заводов осуществлют непрерывный способ производства. Схема непрерывного способа производства суперфосфата приведена на рис. 1


Сообщение на тему минеральные удобрения

Измельченный апатитовый концентрат (или фосфоритная мука) системой транспортеров, шнеков элеваторов передается со склада на автоматический весовой дозатор, из которого дозируется в смеситель непрерывного действия.

Серная кислота (75%-ная башенная H2SO4) непрерывно разбавляется водой в дозаторе-смесителе до концентрации 68% H2SO4 , контролируемой концентратомером, и подается в смеситель, в котором происходит механическое смешивание фосфатного сырья с серной кислотой. Образующаяся пульпа из смесителя передается в реакционную суперфосфатную камеру непрерывного действия, где происходит образование суперфосфата (схватывание и затвердевание пульпы в начальный период созревания суперфосфатной массы). Из суперфосфатной камеры измельченный суперфосфат подкамерным конвейером передается в отделение дообработки – склад суперфосфата, по которому равномерно распределяется разбрасывателем. Для ускорения дозревания суперфосфата его перемешивают на складе грейферным краном. Для улучшения физических свойств суперфосфата его гранулируют во вращающихся барабанах-грануляторах. В грануляторах порошкообразный суперфосфат увлажняется водой, подаваемой внутрь барабана форсунками, и «закатывается» в гранулы различных размеров, которые затем сушат, рассеивают на фракции и тарируют в бумажные мешки.

Основным аппаратом суперфосфатного производства служит суперфосфатная камера. Питание ее пульпой производится из смесителя, укрепленного непосредственно над крышкой камеры. Для непрерывного питания суперфосфатных камер применяются шнековые смесители и камерные смесители с механическим перемешиванием.

Недостатком простого суперфосфата является сравнительно небольшое содержание питательного элемента – не более 20% Р2О5 из апатитового концентрата и не более 15% Р2О5 из фосфоритов. Более концентрированные фосфорные удобрения можно получить при разложении фосфатной породы фосфорной кислоты.

Азотные удобрения

Большинство азотных удобрений получают синтетически: нейтрализацией кислот щелочами. Исходными материалами для получения азотных удобрений служат серная и азотная кислоты, диоксид углерода, жидкий или газообразный аммиак, гидроксид кальция и т.п. Азот находится в удобрениях или в форме катиона NH4+, т.е. в аммиачной форме, в виде NH2 (амидные), или аниона NO3, т.е. в нитратной форме; удобрение одновременно может содержать и аммиачный и нитратный азот. Все азотные удобрения водорастворимы и хорошо усваиваются растениями, но легко выносятся вглубь почвы при обильных дождях или орошении. Распространенным азотным удобрением является нитрат аммония или аммиачная селитра.

Производство аммиачной селитры

Аммиачная селитра – безбалластное удобрение, содержащее 35% азота в аммиачной и нитратной форме, благодаря чему она применяется на любых почвах и для любых культур. Однако это удобрения обладает неблагоприятными для его хранения и применения физическими свойствами. Кристаллы и гранулы аммиачной селитры расплываются на воздухе или слеживаются в крупные агрегаты в результате их гигроскопичности и хорошей растворимости в воде. Кроме того при изменении температуры и влажности воздуха во время хранения аммиачной селитры могут происходить полиморфные превращения. Для подавления полиморфных превращений и повышения прочности гранул аммиачной селитры применяют добавки, вводимые в процессе ее изготовления, — фосфаты и сульфаты аммония, борную кислоту, нитрат магния и др. Взрывоопасность аммиачной селитры осложняет ее производство, хранение и транспортировку.

Аммиачную селитру производят на заводах, вырабатывающих синтетический аммиак и азотную кислоту. Производственный процесс складывается из стадий нейтрализации слабой азотной кислоты газообразным аммиаком, упарки полученного раствора и гранулирования аммиачной селитры. Стадия нейтрализации основана на реакции

NH3+HNO3=NH4NO3+148, 6 кДж

Этот хемосорбционный процесс, при котором поглощение газа жидкостью сопровождается быстрой химической реакцией, идет в диффузионной области и сильно экзотермичен. Теплота нейтрализации рационально используется для испарения воды из растворов нитрата аммония. Применяя азотную кислоту высокой концентрации и подогревая исходные реагенты, можно непосредственно получить плав аммиачной селитры (конценрацией выше 95-96% NH4NO3 ) без применения выпаривания.

Наиболее распространены схемы с неполным упариванием раствора аммиачной селитры за счет теплоты нейтрализации (рис. 2).

Сообщение на тему минеральные удобрения

Основная масса воды упаривается в химическом реакторе –нейтрализаторе ИТН (использование теплоты нейтрализации). Этот реактор – цилиндрический сосуд из нержавеющей стали, внутри которого находится другой цилиндр, куда непосредственно вводится аммиак и азотная кислота. Внутренний цилиндр служит нейтрализационной частью реактора (зона химической реакции), а кольцевое пространство между внутренним цилиндром и корпусом реактора – испарительной частью. Образовавшийся раствор аммиачной селитра поступает из внутреннего цилиндра в испарительную часть реактора, где испарение воды происходит за счет теплообмена между нейтрализационной и испарительной зонами через стенку внутреннего цилиндра. Образовавшийся соковый пар отводится из нейтрализатора ИТН и используется затем как греющий агент.

Сульфатно-фосфатная добавка дозируется в азотную кислоту в виде концентрированных серной и фосфорной кислот, которые нейтрализуются вместе с азотной аммиаком в нейтрализаторе ИТН. При нейтрализации исходной азотной кислоты 58%-ный раствор аммиачной селитры на выходе из ИТН содержит 92-93% NH4NO3; этот раствор направляется в донейтрализатор, в который подается газообразный аммиак с таким расчетом, чтобы раствор содержал избыток аммиака (около 1 г/дм3 своб. NH3), что обеспечивает безопасность дальнейшей работы с плавом NH4NO3. Донейтрализованный раствор концентрируют в комбинированном тарельчатом трубчатом выпарном аппарате с получением плава, содержащего 99,7-99,8% NH4NO3. Для гранулирования высококонцентрированной аммиачной селитры плав погруженными насосами перекачивается наверх грануляционной башни высотой 50-55м. Гранулирование производится разбрызгиванием плава с помощью акустических виброгрануляторов ячеечного типа, обеспечивающих однородный гранулометрический состав продукта. Охлаждение гранул производится воздухом в холодильнике кипящего слоя, состоящем из нескольких последовательных ступеней охлаждения. Охлажденные гранулы опрыскиваются ПАВ в барабане с форсунками и передаются на упаковку.

Ввиду недостатков аммиачной селитры целесообразно изготовление на ее основе сложных и смешанных удобрений. Смешением аммиачной селитры с известняком, сульфатом аммония получают известково-аммиачную селитру, сульфатнитрат аммония и др. Нитрофоску можно получить сплавлением NH4NO3 с солями фосфора и калия.

Производство карбамида

Карбамид (мочевина) среди азотных удобрений занимает второе место по объему производства после аммиачной селитры. Рост производства карбамида обусловлен широкой сферой его применения в сельском хозяйстве. Он обладает большой устойчивостью к выщелачиванию по сравнению с другими азотными удобрениями, т.е. менее подвержен вымыванию из почвы, менее гигроскопичен, может применяться не только как удобрения, но и в качестве добавки к корму крупного рогатого скота. Карбамид, кроме того, широко используется для получения сложных удобрений, удобрений с регулируемым сроком действия, а также для поучения пластмасс, клеев, лаков и покрытий.

Карбамид CO(NH2)2 – белое кристаллическое вещество, содержащее 46.6% азота. Его получение основано на реакции взаимодействия аммиака с диоксидом углерода

2NH3 +CO2=CO(NH2)2+H2O Сообщение на тему минеральные удобренияH=-110,1 кДж (1)

Таким образом, сырьем для производства карбамида служат аммиак т диоксид углерода, получаемый в качестве побочного продукта при производстве технологического газа для синтеза аммиака. Поэтому производство карбамида на химических заводах обычно комбинируют с производством аммиака.

Реакция (1) – суммарная; она протекает в две стадии. На первой стадии происходит синтез карбамата:

2NH3+CO2=NH2COONH4 Сообщение на тему минеральные удобренияH=-125,6 кДж (2)

газ газ жидкость

На второй стадии протекает эндотермический процесс отщепления воды от молекул карбамата, в результате которого и происходит образование карбамида:

NH2COONH4 = CO(NH2)2+ Н2О Сообщение на тему минеральные удобренияН=15.5 (3)

жидкость жидкость жидкость

Реакция образования карбамата аммония – обратимая экзотермическмя, протекает с уменьшением объема. Для смещения равновесия в сторону продукта ее необходимо проводить при повышенном давлении. Для того, чтобы процесс протекал с достаточно высокой скоростью, необходимы и повешенные температуры. Увеличение давления компенсирует отрицательное влияние высоких температур на смещение равновесия реакции в обратную сторону. На практике синтез карбамида проводят при температурах 150-190 Сообщение на тему минеральные удобренияС и давление 15-20 МПа. В этих условиях реакция протекает с высокой скоростью и до конца.

Разложение карбомата аммония – обратимая эндотермическая реакция, интенсивно протекающая в жидкой фазе. Чтобы в реакторе не происходило кристаллизации твердых продуктов, процесс необходимо вести при температуре ниже 98Сообщение на тему минеральные удобренияС (эвтектическая точка для системы CO(NH2)2 — NH2COONH4 ).

Более высокие температуры смещают равновесие реакции вправо и повышают ее скорость. Максимальная степень превращения карбамата в карбамид достигается при 220Сообщение на тему минеральные удобренияС. Для смещения равновесия этой реакции вводят также избыток аммиака, который связывая реакционную воду, удаляет ее из сферы реакции. Однако добиться полного превращения карбамата в карбамид все же не удается. Реакционная смесь по мимо продуктов реакции (карбамида и воды) содержит также карбамат аммония и продукты его разложения – аммиак и СО2.

Для полного использования исходного сырья необходимо либо предусмотреть возвращение непрореагировавших аммиака и диоксида углерода, а также углеаммонийных солей (промежуточных продуктов реакции) в колонну синтеза, т.е. создание рецикла, либо отделение карбамида от реакционной смеси и направление оставшихся реагентов на другие производства, например на производство аммиачной селитры, т.е. проведение процесса по открытой схеме.

Сообщение на тему минеральные удобрения

В крупнотоннажном агрегате синтеза карбамида с жидкостным рециклом и применением стриппинг-процесса (рис. 3) можно выделить узел высокого давления, узел низкого давления и систему грануляции. Водный раствор карбамата аммония и углеаммонийных солей, а также аммиак и диоксид углерода поступают в нижнюю часть колонны синтеза 1 из карбаматного конденсатора высокого давления 4. В колонне синтеза при температуре 170-190Сообщение на тему минеральные удобренияС и давлении 13-15 МПа заканчивается образование карбамата и протекает реакция синтеза карбамида. Расход реагентов подбирают таким образом, чтобы в реакторе молярное отношение NH3:CO2 составляло 2,8-2,9. Жидкая реакционная смесь (плав) из колонны синтеза карбамида поступает в отдувочную колонну 5, где стекает по трубам вниз. Противотоком к плаву подают сжатый в компрессоре до давления 13-15МПа диоксид углерода, к которому для образования пассивирующей пленки и уменьшения коррозии оборудования добавлен воздух в количестве, обеспечивающем в смеси концентрацию кислорода 0,5-0,8%. Отдувочная колонна обогревается водяным паром. Парогазовая смесь из колонны 5, содержащая свежий диоксид углерода, поступает в конденсатор высокого давления 4. В него же вводят жидкий аммиак. Он одновременно служит рабочим потоком в инжекторе 3, подающем в конденсатор раствор углеаммонийных солей из скруббера высокого давления 2 и при необходимости часть плава из колонны синтеза. В конденсаторе образуется карбамат. Выделяющуюся при реакции теплоту используют для получения водяного пара.

Из верхней части колонны синтеза непрерывно выходят непрореагировавшие газы, поступающие в скруббер высокого давления 2, в котором большая часть их конденсируется вследствие водного охлаждения, образуя раствор карбамата и углеаммонитйных солей.

Водный раствор карбамида, выходящий из отдувочной колонны 5, содержит 4-5% карбамата. Для окончательного его разложения раствор дросселируют до давления 0,3-0,6 МПа и затем направляют в верхнюю часть ректификационной колонны 8.

Жидкая фаза стекает в колонне вниз по насадке противотоком к парогазовой смеси, поднимающейся снизу вверх. Из верхней части колонны выходят NH3,CO2 и водяные пары. Водяные пары конденсируются в конденсаторе низкого давления 7, при этом растворяется основная часть аммиака и диоксида углерода. Полученный раствор направляют в скруббер 2. Окончательная очистка газов, выбрасываемых в атмосферу, проводится абсорбционными методами.

70%-ный раствор карбамида, выходящий из нижней части ректификационной колонны 8, отделяют от парогазовой смеси и направляют после снижения давления до атмосферного сначала на выпарку, а затем на грануляцию. Перед распылением плава в грануляционной башне 12 к нему добавляют кондиционирующие добавки, например мочевиноформальдегидную смолу, чтобы получить неслеживающееся удобрение, не портящееся при хранении.

Охрана окружающей среды при производстве удобрений

При производстве фосфорных удобрений велика опасность загрязнения атмосферы фтористыми газами. Улавливание соединений фтора важно не только с точки зрения охраны окружающей среды, но также и потому, что фтор является ценным сырьем для получения фреонов, фторопластов, фторкаучуков и т.д. Соединения фтора могут попасть в сточные воды на стадиях промывки удобрений, газоочистки. Целесообразно для уменьшения количества таких сточных вод создавать в процессах замкнутые водооборотные циклы. Для очистки сточных вод от фтористых соединений могут быть применены методы ионного обмена, осаждения с гидроксидами железа и алюминия, сорбции на оксиде алюминия и др.

Сточные воды производства азотных удобрений, содержащие аммиачную селитру и карбамид, направляют на биологическую очистку, предварительно смешивая их с другими сточными водами в таких соотношениях, чтобы концентрация карбамида не превышала 700мг/л, а аммиака – 65-70мг/л.

Важной задачей в производстве минеральных удобрений является очистка газов от пыли. Особенно велика возможность загрязнения атмосферы пылью удобрений на стадии грануляции. Поэтому газ, выходящий из грануляционных башен, обязательно подвергается пылеочистке сухими и мокрыми методами.

Список литературы

  1. А.М. Кутепов и др.

Общая химическая технология: Учеб. для вузов/А.М. Кутепов,

Т.И. Бондарева, М.Г. Беренгартен.- 3-е изд., перераб. – М.: ИКЦ «Академкнига». 2003. – 528с.

  1. И.П. Мухленов, А.Я. Авербух, Д.А Кузнецов, Е.С. Тумаркина,

И.Э. Фурмер.

Общая химическая технология: Учеб. для химико-техн. спец. вузов.

В 2х томах. Т.2. Важнейшие химические производства/ И.П. Мухленов, А.Я. Кузнецов и др.; Под ред. И.П. Мухленова. – 4-е изд., перераб. и доп. – М.: «Высш. шк.», 1984.-263 с., ил.

  1. Бесков В. С.

Общая химическая технология: Учебник для вузов. – М.: ИКЦ «Академкнига», 2005. -452с.: ил.

Источник: works.doklad.ru

Органические удобрения применение. Лучший вид полных удобрений. Важной составной их частью является гумус — вещество, восcтанавливающие структуру почвы, улучшающее её поглотительную способность, воздушный и водяной режим, активизирующее деятельность микрофлоры. Органические удобрения обогащают почвы макро — и микроэлементами, витаминами. Навоз — (смешанный, свиной, овечий, конский, крупного рогатого скота) — основное органическое удобрение. В 20 тоннах навоза содержится: азота — 100 кг, фосфора — 50 кг, калия — 120 кг. Наиболее эффективно использовать навоз в свежем виде осенью (октябрь, ноябрь) под перекопку почвы, перед посадкой деревьев и для удобрения растений в приствольных канавках. Если навоз завезён весной или летом, его следует обязательно укрыть настом земли 15-20 см. Перегной — перепревший навоз, лучший вид органического удобрения для подкормки растений. Птичий помёт — наиболее концентрированный вид органических удобрений. Содержит азота 2-3%, фосфора 1.5-2%, калия 1%. Под одно дерево вносят 3-5 кг. вещества. Фекалии — содержат много азота и фосфора, мало калия. Лучше всего вносить осенью (не сбраживая) в приствольные канавки и сразу же урывать слоем земли 10-12 см. Под одно дерево 5-6 кг. Компост — органическое удобрение, получаемое из всевозможных отходов: ботва растений, солома, бумага, листья, старые консервные банки, мелкие ветки, пищевые отбросы, гнилые овощи и картофель, бытовой и мелкий строительный мусор — всё кроме стекла, кирпича, плёнки, падалицы фруктов. Для компостирования отходов в конце участка роют яму размером 0.7-0.8 м, обязательно с деревянной крышкой. Некоторые садоводы-любители часто компостируют отходы следующим образом: в междурядьях сада или винограда роют канаву глубиной 30 см., на ширину лопаты укладывают в неё собранные за день отходы и тут же засыпают землёй, продолжая удлинять канаву. Минеральные удобрения. Особенностью минерального удобрения растений является повышенная их потребность в азоте и пониженная в фосфоре (4:1); вынос калия также велик, но его много содержится в глине, недостаток ощущается в песчаной почве. Обозначения основных элементов и соединений: азотные — N, фосфорные — P2O5, калийные — K2O, полные или комплексные минеральные удобрения NPK, к макроэлементам также относятся кальций, магний, железо и сера, к микроэлементам — цинк, молибден, марганец, бор, медь.

Источник: iotvet.com


Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.


Наименование:


реферат Минеральные удобрения

Информация:

Тип работы: реферат. Добавлен: 18.02.2014. Год: 2013. Страниц: 6. Уникальность по antiplagiat.ru: < 30%

Описание (план):

Сообщение на тему минеральные удобрения  
 
 
 
 
 
 
 
 
Реферат на тему:

  Минеральные  удобрения
По предмету:  Химия

 
 
 
 
 
 
 
 
 
[Имя Фамилия]
XX «x» класс
 
 
Оглавление:
 
 Стр.
 

    Минеральные удобрения . . . . . . . . . . . . . . . . . . . . . . .  3
    Фосфорные удобрения . . . . . . . . . . . . . . . . . . . . . . . .   4
    Азотные удобрения . . . . . . . . . . . . . . . . . . . . . . . . . . .   5
    Калиевые удобрения . . . . . . . . . . . . . . . . . . . . . . . . . .  5
    Борные, магниевые и марганцевые удобрения. . . . .   7
    Усвоение растениями удобрений . . . . . . . . . . . . . . . .  7
    Производство минеральных удобрений . . . . . . . . . . . 8

 
 
 

Минеральные удобрения
Минеральные удобрения – источник различных питательных элементов для растений и свойств почвы, в первую очередь азота, фосфора и калия, а затем кальция, магния, серы, железа. Все эти элементы относятся к группе макроэлементов („Макрос” по-гречески –большой), так как они поглощаются растениями в значительных количествах. Кроме того, растениям необходимы другие элементы, хотя и в очень небольших количествах. Их называют микроэлементами („Микрос” по-гречески – маленький). К микроэлементам относятся марганец, бор, медь, цинк, молибден, иод, кобальт и некоторые другие. Все элементы в равной степени необходимы растениям. При полном отсутствии любого элемента в почве растение не может расти и развиваться нормально. Все минеральные элементы участвуют в сложных преобразованиях органических веществ, образующихся в процессе фотосинтеза. Растения для образования своих органов – стеблей, листьев, цветков, плодов, клубней – используют минеральные питательные элементы в разных соотношениях.
В почвах обычно имеются  все необходимые растению питательные  элементы. Но часто отдельных элементов  бывает недостаточно для удовлетворительного  роста растений. На песчаных почвах растения нередко испытывают недостаток магния, на торфяных почвах – молибдена, на черноземах – марганца и т. д. Недостаток элементов восполняется при помощи удобрений. Почвенную кислотность устраняют при помощи углекислых солей кальция и магния.
Применение минеральных удобрений – один из основных приемов интенсивного земледелия. С помощью удобрений можно резко повысить урожаи любых культур на уже освоенных площадях без дополнительных затрат на обработку новых земель. При помощи минеральных удобрений можно использовать  даже самые бедные, так называемые бросовые земли.
Всем живым  организмам необходимы вещества, регулирующие скорость биохимических реакций. Микроэлементы  и входят в состав таких веществ, например ферментов. Действие их многообразно. Например, железо, марганец и цинк входят в состав некоторых ферментов – катализаторов окислительно-восстановительных реакций. Железо способствует образованию хлорофилла. При внесение ничтожных количеств молибдена урожайность бобовых резко возрастает. Соединения молибдена повышают каталитическую активность ферментов, участвующих в реакциях связывания атмосферного азота бактериями.
 
Вырабатываемые  химической промышленностью минеральные  удобрения подразделяются на:
а) фосфорные (главным образом  простой и двойной суперфосфаты и преципитат);
б) азотные (сульфат аммония, аммиачная селитра, кальциевая и  натриевая селитры);
в) калийные (хлористый калий  и смешанные калийные соли);
г) борные, магниевые и  марганцевые (соединения и соли, содержащие эти элементы).
 
 
 
 
 
Фосфорные удобрения
 
Природные соединения фосфора  – фосфориты и апатиты –  содержат фосфор в виде нерастворимого третичного фосфата Ca3(PO4)2, который плохо усваивается растениями. Для получения легко усваиваемых удобрений фосфориты подвергают химической переработке, заключающейся в превращении нормальной соли в кислую. Таким путем приготовляют наиболее важные фосфорные удобрения – суперфосфат, двойной суперфосфат и преципитат.
Для получения суперфосфата мелко размолотый природный фосфорит смешивают с таким количеством серной кислоты, чтобы на одну молекулу третичного фосфата кальция приходилось две молекулы серной кислоты. Смесь энергично перемешивают и загружают в особые непрерывно действующие камеры, где реакция заканчивается:
Ca3(PO4)2+2H2SO4=2CaSO4+Ca(H2PO4)2
 
В результате реакции получается смесь гипса с первичным фосфатом Ca(H2PO4)2, сравнительно легко растворимым в воде. Эта смесь в измельченном или гранулированном виде и называется суперфосфатом.
Простой суперфосфат  – удобрение со сравнительно невысоким содержанием питательных веществ (14 – 20% усвояемой P2O5). Более эффективным и транспортабельным является двойной суперфосфат, представляющий собой продукт разложения природного фосфата не серной, а фосфорной кислотой. Количество усвояемой P2O5 в двойном суперфосфате составляет 40 – 50%.
Преципитат  представляет собой фосфорное удобрение, в состав которого входит вторичный  фосфат кальция Ca2(HPO4)3 или CaHPO4, нерастворимый в воде, но растворяющийся в кислотах находящихся в почве.
Для приготовления  преципитата с начало выделяют из фосфорита свободную фосфорную кислоту, действуя на фосфорит серной кислотой в количестве большем, чем это надо для получения суперфосфата:
Ca3(PO4)2+3H2O=3CaSO4+2H3PO4
Затем раствор  фосфорной кислоты сливают с  осадка, содержащего гипс и другие нерастворимые примеси, и прибавляют к нему известкового молока, т.е. извести, разболтанной в воде, в таком количестве, чтобы образовался вторичный фосфат:
H3PO4+Ca(OH)2=CaHPO4·H2O+H2O
Кристаллический осадок отделяют от жидкости и осторожно, чтобы не удалить входящую в состав кристаллов воду, высушивают. Полученная соль, если она не потеряла кристаллизационной воды, хорошо усваивается растениями.
Описанные выше фосфорные  удобрения называются  простыми, так как содержат только один из необходимых растению элементов. Более перспективными являются сложные минеральные удобрения, содержащие несколько питательных веществ. К удобрениям такого типа относятся: аммофос, калийная селитра и нитрофоска.
Первое из этих веществ  получается путем взаимодействия фосфорной кислоты с аммиаком. В зависимости от степени нейтрализации образуется моноаммонийфосфат NH4H2PO4 и диаммонийфосфат (NH4)2HPO4. Калийная селитра представляет собой двойное удобрение, содержащее азот и калий. Получается она в результате обменного разложения хлористого калия и натронной или аммиачной селитры. Нитрофоска – тройное удобрение, содержащее азот, фосфор и калий. Получают нитрофоску сплавлением фосфата аммония (NH4)2HPO4, азотнокислого аммония NH4NO3 и хлористого  или сернокислотного калия.
 
 
 
Азотные удобрения
 
Аммиачные и  аммонийные удобрения: жидкий NH3, аммиачная вода, сульфаты аммония и аммония-натрия и др. Превращается в почве в малоподвижную форму, которая под действием присутствующих в почве нитрифицирующих бактерий постепенно переходит в более подвижную форму, хорошо усваиваемую растениями. Эти удобрения пригодны для всех сельскохозяйственных культур и применяются на кислых и некислых почвах при их известковании.
Нитратные удобрения: натриевая  и кальциевая селитры. Длительное применение нитратных удобрений может иногда приводить к подщелачиванию почвы. Их используют на всех почвах для предпосевного внесения и подкормки  всех видов растений  в период вегетации.
Аммонийно-нитратные удобрения: аммиачная селитра и аммиакаты  на ее основе, известково-аммиачная селитра-смесь CaCo3 и NH4NO3. Эти удобрения можно использовать в различных климатических зонах под разные почвы и все виды культур.
Амидные удобрения: различают  хорошо растворимые и плохо растворимые. К хорошо растворимым относится карбамид, к плохо растворимым – уреформ и изобутиленкарбамид, получаемый конденсацией изомасляного альдегида с карбамидом. Области применения и масштабы производства медленно действующих удобрений из-за их высокой стоимости пока ограничены.
Аммонийно-нитратно-амидные удобрения: концентрированные  водные растворы карбамида  и нитрата аммония и растворы их в аммиачной воде. Эффективны как для внесения в почву, так и для подкормки растений.  
 
 
Калиевые  удобрения
 
Калиевые удобрения –  минеральные вещества, содержащие калий; применяются в качестве источника калийного питания с/х растений для повышения их урожайности.
В дореволюционной России калийные удобрения не производились. В СССР за годы довоенных пятилеток на базе открытых советскими учёными месторождений  калия создана мощная калийная промышленность, обеспечивающая возрастающую потребность  социалистического с/х в калийных удобрениях. В качестве калийных удобрений используются: сырые калийные соли (сильвинит, каинит), представляющие собой раздроблённые и размолотые соли; концентрированные удобрения (хлористый калий, сернокислый калий) получаемые химической переработкой сырых калийных солей; смешанные (30%-ные и 40%-ные калийные соли), представляющие механическую смесь хлористого калия сильвинитом или каинитом; сульфат калия-магния, или кали-магнезия; древесная торфяная и другая зола.
Сильвинит (mKCL – nNACL) содержат в среднем 14% K2O (принято пересчитывать содержание калия в калийных удобрениях на окись калия K2O даже в том случае, если удобрение не заключает в себе кислорода); обладает значительной гигроскопичностью, при хранении слёживается.
Каинит употребляемый  на удобрение, не всегда отвечает формуле минерала каинита MgSO4 · KCL ·3HO, а может представлять собой или соль, близкую по составу к сильвиниту, или механическую смесь KCL, MgSO4 NaCL, каинита, карналлита и других солей. В каините из прикарпатских месторождений СССР – около 10% K2O, 20% Na2O, 3-4% MgO, 40% CL.
Сырые калийные соли составляют небольшую долю в  общей продукции калийных удобрений. Общие недостатки сырых калийных солей: низкий процент калия и большое количество балластных компонентов, не всегда безвредных для растений. Зерновые злаки (пшеница, рожь, овёс, ячмень), сахарная свёкла и другие корнеплоды не чувствительны к избытку хлора в сырых калийных солях и хорошо их используют. Особенно эффективно внесение сильвинита под свёклу, которая положительно реагирует на примесь натрия. Для многих культур (табак, виноград, чай, цитрусовые, плодово–ягодные культуры, картофель, лён, гречиха) избыток хлора вреден: он снижает урожай и ухудшает его качество. Поэтому под указанные культуры сырые калийные соли не применяют.
Хлористый калий KCL – основной вид калийных удобрений  в России. Получается из сильвинита, который для этого растворяют в горячей воде до состояния насыщения и затем охлаждают раствор; при этом осаждается главным образом KCL, а NaCL остаётся в растворе. Химически чистый хлористый калий содержит 63,2% K2O, а сорта, идущие на удобрение, — от 50 до 60% K2O. Это белый мелкокристаллический продукт, слабо гигроскопичный, при хранении слёживается. Вносится почти под все культуры, в том числе и под некоторые с/х растения, чувствительные к хлору (в хлористом калии на единицу действующего вещества приходится в пять раз меньше хлора, чем в сильвините или в каините).
Сернокислый калий, сульфат калия K2SO4 получают обменным разложением KCL и MgSO4, а также разложением KCL серной кислотой. Чистая соль содержит 54,1% K2O. В технических сортах соли, идущих на удобрение, 48 – 52% K2O. Это мелкокристаллический порошок сероватого цвета, негигроскопичен и не слёживается. Сернокислый калий – хорошее калийное удобрение для всех культур и лучшее для растений, чувствительных к хлору. Внесение сульфата калия под табак, виноград, чай, цитрусовые, плодово–ягодные даёт большой прирост урожая и улучшает его качество.
Смешанные 30%-ые и 40%-ые калийные соли по своей удобрительной ценности занимают промежуточное положение между хлористым калием и сильвинитом. Особенно эффективны при внесении под сахарную и кормовую свёклу. Все применяемые на удобрения калийные соли растворимы в воде. В почве калий, взаимодействуя с почвенным поглощающим комплексом, переходит в поглощенную, обменную форму. Доступность калия для растений при этом не теряется, но способность к передвижению в почве (а следовательно, к вымыванию из неё) крайне ограничена. Поэтому калийные удобрения целесообразно заделывать на глубину пахотного слоя. Содержащие хлор сырые калийные соли вносят с осени под зяблевую вспашку. При этом значительная часть хлора вымывается из верхних слоёв почвы, а калий остаётся в пахотном слое. В России потребность в калийных удобрениях проявляется на большей части почв, но в них особенно нуждаются сх культуры при возделывании на деградированных и выщелоченных чернозёмах и на дерново–подзолистых почвах, на лёгких песчаных и супесчаных почвах, на трофянисто–болотных и луговых. Для большинства культур калийные удобрения вносят из расчёта около 45 – 60 кг. K2O на 1га. Для культур повышенной потребностью в калии (свёкла, картофель, табак и др.) дозы калийных удобрений увеличивают до 90 – 100кг. K2O на 1га. Отличным калийным удобрением является зола, особенно на кислых почвах, где она, кроме того, нейтрализует вредную почвенную кислотность. Навоз также служит источником калия для растений т. к. содержит в среднем около 0,6% K2O.

Источник: www.webkursovik.ru

Что из себя представляют минеральные удобрения

Минеральными удобрениями называют соединения неорганической природы, содержащие в себе необходимые для растительного мира элементы питания. Их особенность заключается в том, что они представляют собой питательные вещества узкой направленности.

Чаще всего это простые, или так называемые односторонние удобрения, состоящие из одного элемента питания (например, фосфора), но существуют и группа многосторонних, комплексных удобрений, содержащих в себе сразу несколько основных элементов (например, азот и калий). Какое из них применить — зависит от состава почвы и желаемого эффекта. В любом случае у каждого минерального удобрения существуют рекомендуемые нормы и время внесения, которые и гарантируют успех их использования.

Виды минеральных удобрений

В самом простом рассмотрении минеральные удобрения делятся на азотные, калийные и фосфорные. Это связано с тем, что именно азот, калий и фосфор являются ведущими элементами питания оказывающими главенствующее влияние на гармоничный рост и развитие растений. Конечно, никто не умаляет важность и других элементов, таких как магний, цинк, железо, однако три перечисленных считаются основой. Рассмотрим их по порядку.

Азотные удобрения

Признаки недостатка азота в почве

Чаще всего недостаток азотных удобрений проявляется у растений в весенний период. Их рост затормаживается, побеги образуются слабыми, листья нетипично мелкими, соцветия в малом количестве. На более поздней стадии данную проблему распознают по высветлению листвы, начинающейся с прожилок и окружающей их ткани. Обычно данный эффект проявляется на нижней части растения и постепенно поднимается вверх, при этом, полностью посветлевшие листья опадают.

Азотное голодание томата
Азотное голодание томата. © Trees That Please

Наиболее активно реагируют на недостаток азота томаты, картофель, яблоня и садовая земляника. И не важно на каком типе почвы растут культуры – недостаток азота может наблюдаться на любом из них.

Виды азотных удобрений

Самыми распространёнными азотными удобрениями являются аммиачная селитра и мочевина. Однако в данную группу входят и сернокислый аммоний, и кальциевая селитра, и натриевая селитра, и азофоска, и нитроаммофоска, и аммофос, и диаммонийфосфат. Все они имеют различный состав и оказывают разное воздействие на почву и культуры. Так, мочевина подкисляет землю, а кальциевая, натриева и аммиачная селитра подщелачивают ее. На натриевую селитру хорошо отзывается свекла, на аммиачную – лук, огурцы, салаты и цветная капуста.

Способы внесения

Азотные удобрения самые опасные среди всех минеральных удобрений. Это связано с тем, что при их избытке, растения накапливают в своих тканях большое количество нитратов. Поэтому применять азот необходимо очень осторожно, в зависимости от состава почвы, подкармливаемой культуры и марки удобрения.

Из-за того, что азот имеет свойство испаряться — вносить азотные удобрения необходимо с безотлагательной последующей заделкой в почву. Осенью удобрять землю азотом нецелесообразно, так как большая его часть к моменту весенней посадки вымывается дождями.

Особого подхода данная группа удобрений требует и при хранении. Из-за повышенной гигроскопичности их необходимо держать в вакуумной упаковке, без доступа воздуха.

Калийные удобрения

Признаки недостатка калия в почве

Недостаток калия проявляется на развитии растений не сразу. К середине вегетации можно заметить, что культура имеет неестественный голубоватый отлив листвы, общую блеклость, а при более серьезной форме калийного голодания – бурые пятна или ожог (отмирание) кончиков листьев. При этом ее стебель нетипично тонкий, имеет рыхлую структуру, короткие междоузлия и часто полегает. Такие растения обычно отстают в росте, медленно формируют бутоны, слабо развивают плоды. У моркови и томатов при калиевом голодании кроме перечисленных симптомов наблюдается курчавость молодых листьев, у картофеля преждевременно отмирает ботва, у винограда ближние к гроздям листочки приобретают либо темно-зеленый, либо фиолетовый оттенок. Жилки на листве испытывающих калийный голод растений будто проваливаются в мякоть листовой пластинки. При незначительном недостатке калия деревья неестественно обильно цветут, а затем формируют нетипично мелкие плоды.

Недостаток калия в томате
Недостаток калия в томате. © Scot Nelson

Достаточное содержание калия в клетках растения обеспечивает им хороший тургор (устойчивость к увяданию), мощное развитие корневой системы, полноценное накопление в плодах основных питательных элементов, устойчивость к низким температурам и болезням.

Чаще всего недостаток калия встречается на очень кислых почвах. Определить его проще по внешнему виду яблони, персика, сливы, малины, груши и смородины.

Виды калийных удобрений

В продаже можно встретить несколько видов калийных удобрений, в частности: калийную селитру, хлористый калий (хорошо подходит для шпината и сельдерея, остальные же культуры плохо реагируют на хлор), сернокислый калий (хорош тем, что содержит еще и серу), калимагнезию (калий + магний), калимаг. Кроме того, калий является частью таких сложных удобрений как нитроаммофоска, нитрофоска, карбоаммофоска.

Способы внесения калийных удобрений

Применение калийных удобрений должно соответствовать прилагаемой к ним инструкции – это упрощает подход к подкормкам и дает надежный результат. Заделывать в почву их необходимо сразу же: в осенний период – под перекопку, весной под посадку рассады. Хлористый калий вносится только осенью, так как это дает возможность выветриться хлору.

Наиболее отзывчивы на внесение калийных удобрений корнеплоды – под них калий необходимо вносить в повышенных дозах.

Фосфорные удобрения

Признаки недостатка фосфора

Признаки недостатка фосфора в тканях растений проявляются практически так же, как и недостатка азота: растение плохо растет, формирует тонкий слабый стебель, задерживается в цветении и созревании плодов, сбрасывает нижнюю листву. Однако в отличие от азотного голодания фосфорная недостаточность вызывает не высветление, а потемнение опадающих листьев, и на более ранних стадиях придает черешкам и жилкам листвы пурпурные и фиолетовые оттенки.

Фосфорное голодание томата
Фосфорное голодание томата. © K. N. Tiwari

Чаще всего недостаток фосфора наблюдается на легких кислых почвах. Наиболее ярко проявляется нехватка данного элемента на томатах, яблоне, персике, черной смородине.

Виды фосфорных удобрений

Одним из самых распространенных фосфорных удобрений, применяемым на любом типе почв, является суперфосфат, достаточно быстрый эффект обеспечивает монофосфат калия, отличным вариантом выступает и фосфорная мука.

Способы внесения фосфорных удобрений

Сколько не вноси фосфорные удобрения, – навредить они не могут. Но все же лучше не действовать необдуманно, а придерживаться оговоренных на упаковке правил.

Когда и что нужно растениям

Потребность в тех или иных питательных элементах у разных культур разная, однако общая закономерность все же существует. Так, в момент до образования первых настоящих листочков, всем молодым растеньицам необходим в большей мере азот и фосфор, их недостачу на данном периоде развития невозможно восполнить в более поздние сроки, даже усиленными подкормками, – угнетенное состояние сохранится до конца вегетации.

Хлорид калия
Хлорид калия. © seekpart
Сульфат аммония
Сульфат аммония. © seekpart
Хлорид аммония
Хлорид аммония. © seekpart

В период активного наращивания растениями вегетативной массы, главенствующую роль в их питании играют азот и калий. В момент бутонизации и цветения — снова становится важен фосфор. Если на этом этапе провести внекорневую подкормку фосфорным и калийным удобрением, растения начнут активно накапливать в тканях сахара, что в конечном итоге положительно отразится на качестве их урожая.

Следовательно, используя минеральные удобрения можно не просто поддерживать плодородие почвы на должном уровне, но и регулировать объем выхода продукции с обрабатываемого участка.

Общие правила внесения минеральных удобрений

Важно понимать, что минеральные удобрения могут применяться как в качестве основного удобрения (осенью под перекопку почвы, либо весной в предпосевной период), так и в варианте весенне-летних подкормок. Для каждого из них существуют свои правила и нормы внесения, но есть и общие рекомендации, пренебрегать которыми нельзя.

  1. Ни в коем случае нельзя разводить удобрения в той посуде, которая используется для приготовления пищи.
  2. Хранить удобрения лучше в вакуумных упаковках.
  3. Если минеральные удобрения слежались, непосредственно перед внесением их необходимо измельчить либо пропустить через сито, с диаметром отверстий от 3 до 5 мм.
  4. При внесении минеральных удобрений под культуру, нельзя превышать рекомендуемую производителем дозу, а лучше просчитать необходимую норму путем лабораторного исследования почвы. В целом же можно рекомендовать подкормки азотными удобрениями в количестве: аммиачной селитрой – 10 – 25 г на м кв., опрыскивание мочевиной – 5 г на 10 л воды; калийными удобрениями: хлористого калия – 20 – 40 г на м кв.(как основное удобрение), для внекорневых подкормок калийной солью – 50 г на 10 л воды ; фосфорными удорениями: монофосфатом калия – 20 г на 10 л воды, для внекорневых подкормок суперфосфатом – 50 г на 10 л воды.
  5. Если подкормка производится через почву, важно постараться чтобы раствор не попал на вегетативную массу удабриваемой культуры, либо после подкормки хорошо ополоснуть растения водой.
  6. Удобрения вносимые в сухом виде, а так же азотсодержащие и калийные удобрения, необходимо сразу же заделывать в верхний слой почвы, но не слишком глубоко так, чтобы они были доступны основной массе корней.
  7. Для того чтобы смягчить вносимый в почву концентрат минеральных удобрений грядки перед его внесением необходимо хорошо промочить.
  8. Если в почве наблюдается недостаток азота, то фосфорные и калийные удобрения необходимо вносить только в сочетании с этим недостающим элементом, иначе они не принесут ожидаемого результата.
  9. Если почвы глинистые — доза вносимых удобрений должна быть несколько увеличена; песчаные — уменьшена, но увеличено количество подкормок. Из фосфорных удобрений для глинистых почв лучше выбирать суперфосфат, для песчаных почв подходит любое фосфорное удобрение.
  10. В зонах с большим количеством осадков (средняя полоса) треть основного удобрения рекомендуется вносить непосредственно при высеве семян или посадке рассады в почву в посадочные лунки и бороздки. Чтобы растения не получили ожог корней, внесенный состав необходимо хорошо перемешивать с землей.
  11. Наибольшего эффекта в улучшении плодородия почвы можно достичь путем чередования минеральных и органических подкормок.
  12. Если посадки на грядках разрослись настолько, что сомкнулись – лучшим вариантом подкормок будет подкормка по листве (внекорневая).
  13. Внекорневую подкормку плодово-ягодных проводят весной по молодой сформированной листве. Корневую подкормку калийными удобрениями производят осенью, заделывая удобрения на глубину в 10 см.
  14. Внесение минеральных удобрений в качестве основного удобрения производится путем разбрасывания по поверхности земли с обязательной последующей заделкой в почву.
  15. Если минеральные удобрения вносятся в почву вместе с органическими, а это самый эффективный способ, дозы минеральных удобрений необходимо уменьшить на треть.
  16. Наиболее практичными являются гранулированные удобрения, но их необходимо вносить под осеннюю перекопку.

Источник: www.botanichka.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.